Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T05:11:22.059Z Has data issue: false hasContentIssue false

The unstable modes of a two-component electron plasma

Published online by Cambridge University Press:  13 March 2009

P. McQuillan
Affiliation:
Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QW, Scotland
K. G. McClements
Affiliation:
Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QW, Scotland

Abstract

In this paper we investigate the linear generation of electrostatic waves in a homogeneous, collisionless, unmagnetized plasma with two Maxwellian electron components, one drifting with respect to the other. The ions are assumed to be infinitely massive. It is shown that such a system may be unstable to a beam mode rather than the well-known Langmuir mode, if the drifting electron component is sufficiently dense and has a sufficiently low temperature. This ‘electron-beam instability’ is driven by the free energy in the particle distribution, and the associated phase velocity is greater than the electron thermal speed. The dispersion characteristics of the electron-beam instability and the Langmuir instability at the critical drift velocity for wave growth are determined for a wide range of parameters. The results of our investigation are applied to electron beams producing hard X-ray emission in solar flares, and it is argued that such beams may be unstable to the generation of electrostatic waves at frequencies below the electron plasma frequency.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. R., Parks, G. K., Eastman, T. E., Gurnett, D. A. & Frank, L. A. 1981 J. Geophys. Res. 86, 4493.CrossRefGoogle Scholar
Brown, J. C. 1971 Solar Phys. 18, 489.Google Scholar
Emslie, A. G. & Smith, D. F. 1984 Astrophys. J. 279, 882.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma, Dispersion Function. Academic.Google Scholar
Fried, B. D. & Gould, R. W. 1961 Phys. Fluids, 4, 139.Google Scholar
Gary, S. P. 1985 J. Geophys. Res. 90, 8213.CrossRefGoogle Scholar
Gary, S. P. 1987 Phys. Fluids, 30, 2745.Google Scholar
Gary, S. P. & Tokar, R. L. 1985 Phys. Fluids, 28, 2439.CrossRefGoogle Scholar
Gautschi, W. 1970 SIAM J. Numer. Anal. 7, 187.Google Scholar
Goldman, M. V. 1983 Solar Phys. 89, 403.aGoogle Scholar
Hoffmann, R. A. & Evans, D. S. 1968 J. Geophys. Res. 73, 6201.Google Scholar
Hoyng, P., Brown, J. C. & Van Beek, H. F. 1976 Solar Phys. 48, 197.CrossRefGoogle Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.Google Scholar
Marsch, E. 1985 J. Geophys. Res. 90, 6327.CrossRefGoogle Scholar
O'Neil, T. M. & Malmberg, J. H. 1968 Phys. Fluids, 11, 1754.Google Scholar
Papadopoulos, K. 1977 Rev. Geophys. Space Sci. 15, 113.Google Scholar
Self, S. A., Shoucri, M. M. & Crawford, F. W. 1971 J. Appl. Phys. 42, 704.CrossRefGoogle Scholar
Singhaus, H. E. 1964 Phys. Fluids, 7, 1534.Google Scholar
Vlahos, L. & Papadopoulos, K. 1979 Astrophys. J. 233, 717.CrossRefGoogle Scholar
Vlasov, A. A. 1938 Zh. Eksp. Tear. Fiz. 8, 29.Google Scholar