Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T04:37:07.281Z Has data issue: false hasContentIssue false

Simulations of solar wind variations during an 11-year cycle and the influence of north–south asymmetry

Published online by Cambridge University Press:  06 September 2018

B. Perri*
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France
A. S. Brun
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France
V. Réville
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France EPSS, University of California, Los Angeles, CA, USA
A. Strugarek
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France
*
Email address for correspondence: [email protected]

Abstract

We want to study the connections between the magnetic field generated inside the Sun and the solar wind impacting Earth, especially the influence of north–south asymmetry on the magnetic and velocity fields. We study a solar-like 11-year cycle in a quasi-static way: an asymmetric dynamo field is generated through a 2.5-dimensional (2.5-D) flux-transport model with the Babcock–Leighton mechanism, and then is used as bottom boundary condition for compressible 2.5-D simulations of the solar wind. We recover solar values for the mass loss rate, the spin-down time scale and the Alfvén radius, and are able to reproduce the observed delay in latitudinal variations of the wind and the general wind structure observed for the Sun. We show that the phase lag between the energy of the dipole component and the total surface magnetic energy has a strong influence on the amplitude of the variations of global quantities. We show in particular that the magnetic torque variations can be linked to topological variations during a magnetic cycle, while variations in the mass loss rate appear to be driven by variations of the magnetic energy.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschuler, M. D. & Newkirk, G. 1969 Magnetic fields and the structure of the solar corona. I: methods of calculating coronal fields. Sol. Phys. 9, 131149.Google Scholar
Augustson, K., Brun, A. S., Miesch, M. & Toomre, J. 2015 Grand minima and equatorward propagation in a cycling stellar convective dynamo. Astrophys. J. 809, 149.Google Scholar
Babcock, H. W. 1961 The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572587.Google Scholar
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S. & Toomre, J. 2011 Magnetic cycles in a convective dynamo simulation of a young solar-type star. Astrophys. J. 731, 69.Google Scholar
Brun, A. S., Antia, H. M., Chitre, S. M. & Zahn, J.-P. 2002 Seismic tests for solar models with tachocline mixing. Astron. Astrophys. 391, 725739.Google Scholar
Brun, A. S. & Browning, M. K. 2017 Magnetism, dynamo action and the solar-stellar connection. Living Rev. Solar Phys. 14, 4.Google Scholar
Brun, A. S., Miesch, M. S. & Toomre, J. 2004 Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 10731098.Google Scholar
Charbonneau, P. 2010 Dynamo models of the solar cycle. Living Rev. Solar Phys. 7, 3.Google Scholar
Clette, F. & Lefèvre, L. 2012 Are the sunspots really vanishing? Anomalies in solar cycle 23 and implications for long-term models and proxies. J. Space Weather Space Climate 2 (27), A06.Google Scholar
Cranmer, S. R., van Ballegooijen, A. A. & Edgar, R. J. 2007 Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. 171, 520551.Google Scholar
Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T. & Wesenberg, M. 2002 Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645673.Google Scholar
DeRosa, M. L., Brun, A. S. & Hoeksema, J. T. 2012 Solar magnetic field reversals and the role of dynamo families. Astrophys. J. 757, 96.Google Scholar
Dikpati, M. & Charbonneau, P. 1999 A Babcock–Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508520.Google Scholar
Einfeldt, B. 1988 On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25, 294318.Google Scholar
Gallet, B. & Pétrélis, F. 2009 From reversing to hemispherical dynamos. Phys. Rev. E 80 (3), 035302.Google Scholar
Ghizaru, M., Charbonneau, P. & Smolarkiewicz, P. K. 2010 Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Lett. 715, L133L137.Google Scholar
Gilman, P. A. 1983 Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II – dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. 53, 243268.Google Scholar
Glatzmaier, G. A. 1985 Numerical simulations of stellar convective dynamos. III – at the base of the convection zone. Geophys. Astrophys. Fluid Dyn. 31, 137150.Google Scholar
Grappin, R., Léorat, J., Leygnac, S. & Pinto, R. 2010 Search for a self-consistent solar wind model. In Twelfth International Solar Wind Conference, vol. 1216, pp. 2427. AIP Conference Proceedings.Google Scholar
Hoeksema, J. T. 2010 Evolution of the large-scale magnetic field over three solar cycles. In Solar and Stellar Variability: Impact on Earth and Planets (ed. Kosovichev, A. G., Andrei, A. H. & Rozelot, J.-P.), IAU Symposium, vol. 264, pp. 222228. International Astronomical Union.Google Scholar
Hollweg, J. V. & Isenberg, P. A. 2002 Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. 107, 1147.Google Scholar
Hotta, H., Rempel, M. & Yokoyama, T. 2016 Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351, 14271430.Google Scholar
Hung, C. P., Brun, A. S., Fournier, A., Jouve, L., Talagrand, O. & Zakari, M. 2017 Variational estimation of the large-scale time-dependent meridional circulation in the Sun: proofs of concept with a solar mean field dynamo model. Astrophys. J. 849, 160.Google Scholar
Issautier, K., Le Chat, G., Meyer-Vernet, N., Moncuquet, M., Hoang, S., MacDowall, R. J. & McComas, D. J. 2008 Electron properties of high-speed solar wind from polar coronal holes obtained by Ulysses thermal noise spectroscopy: not so dense, not so hot. Geophys. Res. Lett. 35, L19101.Google Scholar
Jouve, L. & Brun, A. S. 2007 On the role of meridional flows in flux transport dynamo models. Astron. Astrophys. 474, 239250.Google Scholar
Jouve, L., Brun, A. S., Arlt, R., Brandenburg, A., Dikpati, M., Bonanno, A., Käpylä, P. J., Moss, D., Rempel, M., Gilman, P. et al. 2008 A solar mean field dynamo benchmark. Astron. Astrophys. 483, 949960.Google Scholar
Keppens, R. & Goedbloed, J. P. 1999 Numerical simulations of stellar winds: polytropic models. Astron. Astrophys. 343, 251260.Google Scholar
Khabarova, O. V., Malova, H. V., Kislov, R. A., Zelenyi, L. M., Obridko, V. N., Kharshiladze, A. F., Tokumaru, M., Sokół, J. M., Grzedzielski, S. & Fujiki, K. 2017 High-latitude conic current sheets in the solar wind. Astrophys. J. 836, 108.Google Scholar
Krause, F. & Raedler, K.-H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon.Google Scholar
Kumar, R., Jouve, L., Pinto, R. F. & Rouillard, A. P. 2018 Production of sunspots and their effects on the corona and solar wind: Insights from a new 3D flux transport dynamo model. Frontiers in Astronomy and Space Sciences 5, 4.Google Scholar
Leer, E. & Holzer, T. E. 1980 Energy addition in the solar wind. J. Geophys. Res. 85, 46814688.Google Scholar
Leighton, R. B. 1969 A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 126.Google Scholar
Linker, J. A., Caplan, R. M., Downs, C., Riley, P., Mikic, Z., Lionello, R., Henney, C. J., Liu, Y., Derosa, M. L., Yeates, A. et al. 2017 The open flux problem. Astrophys. J. 848, 70.Google Scholar
Marsch, E. & Richter, A. K. 1984 Distribution of solar wind angular momentum between particles and magnetic field – inferences about the Alfven critical point from HELIOS observations. J. Geophys. Res. 89, 53865394.Google Scholar
Martínez-Sykora, J., Hansteen, V. & Carlsson, M. 2008 Twisted flux tube emergence from the convection zone to the corona. Astrophys. J. 679, 871888.Google Scholar
Matsumoto, T. & Suzuki, T. K. 2012 Connecting the Sun and the solar wind: the first 2.5-dimensional self-consistent MHD simulation under the Alfvén wave scenario. Astrophys. J. 749, 8.Google Scholar
Matt, S. P., MacGregor, K. B., Pinsonneault, M. H. & Greene, T. P. 2012 Magnetic braking formulation for sun-like stars: dependence on dipole field strength and rotation rate. Astrophys. J. Lett. 754, L26.Google Scholar
McComas, D. J., Ebert, R. W., Elliott, H. A., Goldstein, B. E., Gosling, J. T., Schwadron, N. A. & Skoug, R. M. 2008 Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103.Google Scholar
Miesch, M. S. 2005 Large-scale dynamics of the convection zone and tachocline. Living Rev. Solar Phys. 2, 1.Google Scholar
Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C. & Ferrari, A. 2007 PLUTO: a numerical code for computational astrophysics. Astrophys. J. Suppl. 170, 228242.Google Scholar
Mursula, K. & Hiltula, T. 2003 Bashful ballerina: southward shifted heliospheric current sheet. Geophys. Res. Lett. 30, 2135.Google Scholar
Newton, H. W. & Milsom, A. S. 1955 Note on the observed differences in spottedness of the Sun’s northern and southern hemispheres. Mon. Not. R. Astron. Soc. 115, 398404.Google Scholar
Ossendrijver, M. 2003 The solar dynamo. Astron. Astrophys. Rev. 11, 287367.Google Scholar
Parker, E. N. 1958 Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664676.Google Scholar
Parker, E. N. 1988 Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474479.Google Scholar
Parker, E. N. 1993 A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408, 707719.Google Scholar
Pinto, R. F., Brun, A. S., Jouve, L. & Grappin, R. 2011 Coupling the solar dynamo and the corona: wind properties, mass, and momentum losses during an activity cycle. Astrophys. J. 737, 72.Google Scholar
Pizzo, V., Schwenn, R., Marsch, E., Rosenbauer, H., Muehlhaeuser, K.-H. & Neubauer, F. M. 1983 Determination of the solar wind angular momentum flux from the HELIOS data – an observational test of the Weber and Davis theory. Astrophys. J. 271, 335354.Google Scholar
Pneuman, G. W. & Kopp, R. A. 1971 Gas-magnetic field interactions in the solar corona. Sol. Phys. 18, 258270.Google Scholar
Rempel, M., Schüssler, M. & Knölker, M. 2009 Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys. J. 691, 640649.Google Scholar
Réville, V. & Brun, A. S. 2017 Global solar magnetic field organization in the outer corona: influence on the solar wind speed and mass flux over the cycle. Astrophys. J. 850, 45.Google Scholar
Réville, V., Brun, A. S., Matt, S. P., Strugarek, A. & Pinto, R. F. 2015a The effect of magnetic topology on thermally driven wind: toward a general formulation of the braking law. Astrophys. J. 798, 116.Google Scholar
Réville, V., Brun, A. S., Strugarek, A., Matt, S. P., Bouvier, J., Folsom, C. P. & Petit, P. 2015b From solar to stellar corona: the role of wind, rotation, and magnetism. Astrophys. J. 814, 99.Google Scholar
Riley, P., Lionello, R., Linker, J. A., Cliver, E., Balogh, A., Beer, J., Charbonneau, P., Crooker, N., DeRosa, M., Lockwood, M. et al. 2015 Inferring the structure of the solar corona and inner heliosphere during the maunder minimum using global thermodynamic magnetohydrodynamic simulations. Astrophys. J. 802, 105.Google Scholar
Roberts, P. H. 1972 Kinematic dynamo models. Phil. Trans. R. Soc. Lond. A 272, 663698.Google Scholar
Sakurai, T. 1985 Magnetic stellar winds – A 2-D generalization of the Weber–Davis model. Astron. Astrophys. 152, 121129.Google Scholar
Schatten, K. H., Wilcox, J. M. & Ness, N. F. 1969 A model of interplanetary and coronal magnetic fields. Sol. Phys. 6, 442455.Google Scholar
Schatzman, E. 1962 A theory of the role of magnetic activity during star formation. Ann. Astrophys. 25, 1844.Google Scholar
Schou, J., Antia, H. M., Basu, S., Bogart, R. S., Bush, R. I., Chitre, S. M., Christensen-Dalsgaard, J., Di Mauro, M. P., Dziembowski, W. A., Eff-Darwich, A. et al. 1998 Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler imager. Astrophys. J. 505, 390417.Google Scholar
Schrijver, C. J. & De Rosa, M. L. 2003 Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165200.Google Scholar
Shukuya, D. & Kusano, K. 2017 Simulation study of hemispheric phase-asymmetry in the solar cycle. Astrophys. J. 835, 84.Google Scholar
Smith, E. J. 2011 Solar cycle evolution of the heliospheric magnetic field: the Ulysses legacy. J. Atmos. Sol.-Terr. Phys. 73, 277289.Google Scholar
Sokół, J. M., Swaczyna, P., Bzowski, M. & Tokumaru, M. 2015 Reconstruction of helio-latitudinal structure of the solar wind proton speed and density. Sol. Phys. 290, 25892615.Google Scholar
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.Google Scholar
Stix, M. 1976 Differential rotation and the solar dynamo. Astron. Astrophys. 47, 243254.Google Scholar
Strugarek, A., Beaudoin, P., Charbonneau, P., Brun, A. S. & do Nascimento, J.-D. 2017 Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations. Science 357, 185187.Google Scholar
Suzuki, T. K. & Inutsuka, S.-i. 2005 Making the Corona and the Fast Solar Wind: a self-consistent simulation for the low-frequency Alfvén Waves from the photosphere to 0.3 AU. Astrophys. J. Lett. 632, L49L52.Google Scholar
Svalgaard, L. & Kamide, Y. 2013 Asymmetric solar polar field reversals. Astrophys. J. 763, 23.Google Scholar
Temmer, M., Rybák, J., Bendík, P., Veronig, A., Vogler, F., Otruba, W., Pötzi, W. & Hanslmeier, A. 2006 Hemispheric sunspot numbers $\{R_{n}\}$ and $\{R_{s}\}$ from 1945–2004: catalogue and N-S asymmetry analysis for solar cycles 18-23. Astron. Astrophys. 447, 735743.Google Scholar
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S. & Toomre, J. 2003 The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599643.Google Scholar
Tobias, S. M. 1997 The solar cycle: parity interactions and amplitude modulation. Astron. Astrophys. 322, 10071017.Google Scholar
Tokumaru, M., Fujiki, K. & Iju, T. 2015 North-south asymmetry in global distribution of the solar wind speed during 1985–2013. J. Geophys. Res. 120, 32833296.Google Scholar
Tokumaru, M., Kojima, M. & Fujiki, K. 2010 Solar cycle evolution of the solar wind speed distribution from 1985 to 2008. J. Geophys. Res. 115, A04102.Google Scholar
Tóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., Manchester, W. B., Meng, X., Najib, D., Powell, K. G. et al. 2012 Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231, 870903.Google Scholar
Vernazza, J. E., Avrett, E. H. & Loeser, R. 1981 Structure of the solar chromosphere. III – models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. 45, 635725.Google Scholar
Vizoso, G. & Ballester, J. L. 1990 The north-south asymmetry of sunspots. Astron. Astrophys. 229, 540546.Google Scholar
Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T. & Linde, T. 2005 Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335351.Google Scholar
Wang, Y.-M. 1998 Cyclic magnetic variations of the Sun. In Cool Stars, Stellar Systems, and the Sun (ed. Donahue, R. A. & Bookbinder, J. A.), Astronomical Society of the Pacific Conference Series, vol. 154, pp. 131152. R. A. Donahue and J. A. Bookbinder.Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. 1991 Magnetic flux transport and the sun’s dipole moment – new twists to the Babcock–Leighton model. Astrophys. J. 375, 761770.Google Scholar
Wang, Y.-M., Sheeley, N. R. Jr. & Rich, N. B. 2007 Coronal pseudostreamers. Astrophys. J. 658, 13401348.Google Scholar
Weber, E. J. & Davis, L. Jr. 1967 The angular momentum of the solar wind. Astrophys. J. 148, 217227.Google Scholar
Wedemeyer-Böhm, S., Lagg, A. & Nordlund, Å. 2009 Coupling from the photosphere to the chromosphere and the Corona. Space Sci. Rev. 144, 317350.Google Scholar
Zanni, C. & Ferreira, J. 2009 MHD simulations of accretion onto a dipolar magnetosphere. I. Accretion curtains and the disk-locking paradigm. Astron. Astrophys. 508, 11171133.Google Scholar