Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T08:40:58.821Z Has data issue: false hasContentIssue false

Resistive convection in a cylindrical plasma

Published online by Cambridge University Press:  13 March 2009

L. Gomberoff
Affiliation:
Facultad de Ciencias Básicas, Departamento de Física, Universidad de Chile, Casilla 653, Santiago, Chile

Abstract

It is shown that the combined effect of resistivity and thermal conductivity is responsible for the existence of marginal stationary modes in a cylindrical current-carrying plasma, under the influence of a shearless magnetic field. These modes occur in the tokamak approximation and for low wavenumbers. In the nonlinear theory they give rise to large-scale stationary convection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chandrasekhar, S. 1961 Hydrodynamics and Hydromagnetic Stability. Oxford University Press.Google Scholar
Dagazian, R. Y. & Paris, R. B. 1977 Phys. Fluids, 20, 917.Google Scholar
Freidberg, J. P. 1970 Phys. Fluids, 13, 1812.Google Scholar
Goedbloed, J. P. & Hagebeuk, H. J. L. 1972 Phys. Fluids, 15, 1090.CrossRefGoogle Scholar
Gomberoff, L. & Maschke, E. K. 1981 Field Theory, Quantization and Statistical Physics (ed. Tirapegui, E.), p. 123. Reidel.CrossRefGoogle Scholar
Gomberoff, L. & Hernández, M. 1983 Phys. Rev. A, 27, 1244.Google Scholar
Kadomtsev, B. & Pogutse, O. 1970 Reviews of Plasma Physics (ed. M. A. Leontovioh), vol. 5, p. 349.Google Scholar
Maschke, E. K. & Paris, R. B. 1973 Proceedings of 6th European Conference on Controlled Fusion and Plasma Physics (Joint Institute for Nuclear Research, Moscow, U.S.S.R., 1973), vol. 1, p. 205.Google Scholar
Maschke, E. K. & Paris, R. B. 1975 Proceedings of 5th Conference on Plasma Physics and Controlled Fusion, Tokyo, p. 205. IAEA.Google Scholar
Ohta, M., Shimomura, Y. & Takeda, T. 1972 Nucl. Fusion, 12, 271.Google Scholar
Okuda, H. & Dawson, J. M. 1973 Phys. Fluids, 16, 408.CrossRefGoogle Scholar
Roberts, K. V. & Taylor, J. B. 1965 Phys. Fluids, 8, 315.Google Scholar
Simon, A. 1968 Phys. Fluids, 11, 1186.CrossRefGoogle Scholar
Shafranov, V. D. 1958 Plasma Physics and the Problem of Controlled Thermonuclear Research, vol. 2, p. 197. Pergamon.Google Scholar
Takeda, T., Shimomura, Y., Ohta, M. & Yoshikawa, M. 1972 Phys. Fluids, 15, 2193.CrossRefGoogle Scholar
Tayler, R. J. 1957 Proc. Phys. Soc. (London), B 70, 1049.CrossRefGoogle Scholar
Timofeev, A. V. 1936 Soviet Phys. Tech. Phys. 33, 7/6.Google Scholar
Wobig, H. 1972 Plasma Phys. 14, 403.Google Scholar