Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T03:51:09.111Z Has data issue: false hasContentIssue false

Re-ionization of a partially ionized plasma by an Alfvén wave of moderate amplitude

Published online by Cambridge University Press:  13 March 2009

M. H. Brennan
Affiliation:
School of Physical Sciences, The Flinders University of South Australia, Bedford Park, S.A. 5042
M. L. Sawley
Affiliation:
School of Physical Sciences, The Flinders University of South Australia, Bedford Park, S.A. 5042

Abstract

This paper reports on the use of forced magneto-acoustic oscillations to investigate the effect of a torsional hydromagnetic (Alfvén) wave pulse of moderate amplitude on the properties of a partially ionized afterglow helium plasma. Observations of the magnetic flux associated with the oscillations, measured at a number of frequencies, are used to determine radial density proffles and to provide estimates of plasma temperature. The torsional wave is shown to cause significant re-ionization of the plasma with no corresponding increase in the plasma temperature. The torsional wave is shown to cause significant re-ionization of the plasma with no corresponding increase in the plasma temperature. However, the presence of a number of energetic particles is evidenced by the production of a significant number of doubly charged helium ions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berger, E., Müller, G., Räuchle, E. & Schüller, P. G. 1975 Proceedings 7th European Conference on Controlled Fusion and Plasma Physics, Lausanne, vol. 1, p. 154.Google Scholar
Blackwell, B. D. & Cross, R. C. 1979 J. Plasma Phys. 22, 499.CrossRefGoogle Scholar
Brennan, M. H., Cheetham, A. D., Jones, I. R. & Sawley, M. L. 1978 a J. Plasma Phys. 19, 375.CrossRefGoogle Scholar
Brennan, M. H., Jessup, B. L. & Jones, I. R. 1977 J. Plasma Phys. 18, 127.CrossRefGoogle Scholar
Brennan, M. H., Jessup, B. L. & Jones, I. R. 1978 b Aust. J. Phys. 31, 477.CrossRefGoogle Scholar
Brennan, M. H. & Morrow, R. 1971 J. Phys. B, 4, L53.Google Scholar
Brown, I. G. & Watson-Munro, C. N. 1967 Plasma Phys. 9, 43.CrossRefGoogle Scholar
Cross, R. C. & Blackwell, B. D. 1978 Aust. J. Phys. 31, 61.CrossRefGoogle Scholar
Delcroix, J. L. 1965 Plasma Physics. Wiley.Google Scholar
Ferguson, A. F. & Moiseiwitsch, B. L. 1959 Proc. Phys. Soc. 74, 459.CrossRefGoogle Scholar
Frommelt, J. J. B. & Jones, I. R. 1975 J. Plasma Phys. 14, 373.CrossRefGoogle Scholar
Jessup, B. L. & Mccarthy, A. L. 1978 IEEE Trans. Plasma Sci. 6, 220.CrossRefGoogle Scholar
Mahadevan, P. & Magnuson, G. D. 1968 Phys. Rev. 171, 103.CrossRefGoogle Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases. Interscience.Google Scholar
Sy, W. N-C. 1978 Phys. Fluids, 21, 702.CrossRefGoogle Scholar
Zickert, D. W. & Schneider, H. 1969 Helv. Phys. Acta, 42, 871.Google Scholar