Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T06:54:44.763Z Has data issue: false hasContentIssue false

On the relaxation of non-thermal plasmas

Published online by Cambridge University Press:  13 March 2009

A. D. McGowan
Affiliation:
Department of Mathematical and Computational Sciences, University of St Andrews, St Andrews, Fife KY16 9SS, Scotland
J. J. Sanderson
Affiliation:
Department of Mathematical and Computational Sciences, University of St Andrews, St Andrews, Fife KY16 9SS, Scotland

Abstract

The collisional relaxation of various plasma distributions that are initially far removed from thermal equilibrium is investigated numerically using a Fokker–Planck code. It is shown that self-similar and kappa distributions do not remain self-similar or kappa, and that this is due to the velocity dependence of the effective collision frequency. For the relaxation of an isotropic two temperature plasma it is shown that a constant-temperature three-component distribution function is a plausible model for analytical calculations. Investigation of the relaxation of bi-Maxwellian plasmas resolves some discrepancies that have arisen from earlier studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. 1982 J. Plasma Phys. 27, 553.CrossRefGoogle Scholar
Dum, C. T. 1978 Phys. Fluids 21, 956.CrossRefGoogle Scholar
Feldman, W. C., Anderson, R. C., Bame, S. J., Gary, S. P., Gosling, J. T., McComas, D. J., Thomsen, M. F., Paschmann, G. & Hoppe, M. M. 1983 J. Geophys. Res. 88, 96.CrossRefGoogle Scholar
Gosling, J. T., Asbridge, J. R., Bame, S. J., Feldman, W. C., Zwickl, R. D., Paschmann, G., Schopke, N. & Hynds, R. 1981 J. Geophys. Res. 86, 547.CrossRefGoogle Scholar
Jones, R. D. 1980 Los Alamos National Laboratory Report LA-UR-80-2857.Google Scholar
Jorna, S. & Wood, L. 1987 a Phys. Rev. A 36, 397.CrossRefGoogle Scholar
Jorna, S. & Wood, L. 1987 b J. Plasma Phys. 38, 317.CrossRefGoogle Scholar
Kogan, V. I. 1961 Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol I, p. 153. Pergamon.Google Scholar
Langdon, A. B. 1980 Phys. Rev. Lett. 44, 575.CrossRefGoogle Scholar
McGowan, A. D. 1991 Ph.D. thesis, Numerical Studies of the Fokker-Planck Equation, University of St Andrews.Google Scholar
Marsch, E. & Livi, S. 1985 Phys. Fluids 28, 1379.CrossRefGoogle Scholar
Schamel, H., Hamnen, H., Duchs, D. F., Stringer, T. E. & O'Brien, M. R. 1989 Phys. Fluids B 1, 1.CrossRefGoogle Scholar
Scudder, J. D. & Olbert, S. 1979 J. Geophys. Res. 84, 2755 and 6603.CrossRefGoogle Scholar