Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T06:55:22.718Z Has data issue: false hasContentIssue false

Numerical determination of the ambipolar electric field in a stellarator-reactor plasma

Published online by Cambridge University Press:  13 March 2009

W. D. D'Haeseleer
Affiliation:
Torsatron/Stellarator Laboratory, University of Wisconsìn-Madison, Madison, Wisconsin 53706, U.S.A.
W. N. G. Hitchon
Affiliation:
Torsatron/Stellarator Laboratory, University of Wisconsìn-Madison, Madison, Wisconsin 53706, U.S.A.
J. L. Shohet
Affiliation:
Torsatron/Stellarator Laboratory, University of Wisconsìn-Madison, Madison, Wisconsin 53706, U.S.A.

Abstract

A numerical parametric study of the radial ambipolar electric field in a stellarator reactor has been undertaken. With the numerical neoclassical code FLOCS (Flow Code for Stellarators), which is capable of handling both ions and electrons of all relevant kinetic energies, the radial ambipolar field (Er)AMB is determined from the algebraic condition that ion and electron fluxes are equal. As expected, the potential is of the same order of magnitude as the temperature. Somewhat surprisingly at first sight, however, the potential does not change much with the temperature (in the parameter range under consideration), being somewhat insensitive to moderate variations of T. An explanation for this behaviour is presented. Finally, the radial particle fluxes, consistent with the obtained (Er)AMB, and the particle confinement time are computed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Book, D. L. 1983 NRL Plasma Formulary. Naval Research Laboratory, Washington, D.C.Google Scholar
Boozer, A. H. & Kuo-Petravic, G. 1981 Phys. Fluids, 24, 851.CrossRefGoogle Scholar
Connor, J. W. & Hastie, R. J. 1974 Phys. Fluids, 17, 114.CrossRefGoogle Scholar
Coronado, M. & Wobig, H. 1987 Phys. Fluids, 30, 3171.CrossRefGoogle Scholar
D'Haeseleer, W. D., Hitchon, W. N. G. & Shohet, J. L. 1989 a Submitted to Nucl. Fusion.Google Scholar
D'Haeseleer, W. D., Hitchon, W. N. G. & Shohet, J. L. 1989 b Submitted to J. Comp. Phys.Google Scholar
Hastings, D. E., Houlberg, W. A. & Shaing, K. G. 1985 Nucl. Fusion, 25, 445.CrossRefGoogle Scholar
Hirshman, S. P., Sigmar, D. J. & Clarke, J. F. 1976 Phys. Fluids, 19, 656.CrossRefGoogle Scholar
Hitchon, W. N. G. & Mynick, H. E. 1987 J. Plasma Phys. 37, 383.CrossRefGoogle Scholar
Ho, D. D. M. & Kulsrud, R. M. 1987 Phys. Fluids, 30, 442.CrossRefGoogle Scholar
Kovrizhnykh, L. M. 1986 Comments Plasma Phys. Contr. Fusion, 9, 239.Google Scholar
Mynick, H. E. & Hitchon, W. N. G. 1983 Nucl. Fusion, 23, 1053.CrossRefGoogle Scholar
Mynick, H. E. & Hitchon, W. N. G. 1986 Nucl. Fusion, 26, 425.CrossRefGoogle Scholar
Shaing, K. C., Fowler, R. H., Hastings, D. E., Houlberg, W. A., Jaeger, E. F., Lyon, J. F., Rome, J. A., Tolliver, J. S. & Callen, J. D. 1985 Proceedings of Conference on Plasma Physics and Controlled Nuclear Fusion Research, London, 1984, vol. 1, p. 189. TAEA. Vienna.Google Scholar
Shaing, K. C., Hirschman, S. P. & Callen, J. D. 1986 Phys. Fluids, 29, 521.CrossRefGoogle Scholar