Hostname: page-component-cc8bf7c57-5wl6q Total loading time: 0 Render date: 2024-12-11T22:59:22.305Z Has data issue: false hasContentIssue false

The method of the averaged Hamiltonian and the two-stream explosive instability

Published online by Cambridge University Press:  13 March 2009

Z. Sedláček
Affiliation:
Institute of Plasma Physics, Czechoslovak Academy of Sciences, Prague

Abstract

Second-order perturbation calculation shows that an explosive instability of three resonantly interacting coherent electrostatic waves can be limited, and converted into a multiple-periodic process by nonlinear terms of the same order as those that destabilize the waves in the first-order approximation. No higher- order nonlinearities are necessary. The method used is purely classical, and consists in transforming the Hamiltonian of the waves into angle-action variables, and canonical averaging of the Hamiltonian over the proper angles. The number of degrees of freedom is thus reduced to one, which permits one to analyse the wave interaction in the phase plane without using the usual equations for the complex wave amplitudes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aamodt, R. E., & Sloan, M. L. 1967 Phys. Rev. Letters, 19, 1227.CrossRefGoogle Scholar
Aamodt, R. E., & Sloan, M. L. 1968 Phys. Fluids, 11, 2218.CrossRefGoogle Scholar
Bogolyubov, N. N., & Mitropolskii, Y. A. 1955 Asymptotitsheskie metody v teorii nelineinykh kolebanii. Moscow: Gos. izd. tekhniko-teor. lit.Google Scholar
Born, N. 1960 The Mechanics of the Atom. New York: F. Ungar.Google Scholar
Boyd, T. J. M., & Turner, J. G. 1972 J. Phys. A 5, 881.CrossRefGoogle Scholar
Boyd, T. J. M., & Turner, J. G. 1973 J. Phys. A 6, 272.CrossRefGoogle Scholar
Byers, J. A., Rensink, M. E., Smith, J. L., & Walters, G. M. 1971 Phys. Fluids, 14, 826.CrossRefGoogle Scholar
Coffey, T. P. 1969 J. Math. Phys. 10, 426.CrossRefGoogle Scholar
Coppi, B., Rosenbluth, M. N., & Sudan, R. N. 1969 Ann. Phys. N.Y. 55, 207.CrossRefGoogle Scholar
Davidson, R. C. 1971 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Dougherty, J. P. 1970 J. Plasma Phys. 4, 761.CrossRefGoogle Scholar
Dysthe, K. B. 1970 Int. J. Electronics, 29, 401.CrossRefGoogle Scholar
Fukai, J., & Harris, E. G. 1971 Phys. Fluids, 14, 1748.CrossRefGoogle Scholar
Fukai, J., Krishnan, S., & Harris, E. G. 1970 Phys. Fluids, 13, 3031.CrossRefGoogle Scholar
Fues, E. 1927 Handbuch der Physik, vol. 5, p. 131. Springer.Google Scholar
Galloway, J. J., & Kim, H. 1971 J. Plasma Phys. 6, 53.CrossRefGoogle Scholar
Goldstein, H. 1951 Classical Mechanics. Addison-Wesley.Google Scholar
Mitropolskii, Y. A. 1971 Metod usrednenia v nelineinoi mekhanike. Kiev: Naukova Dumka.Google Scholar
Oraevskii, V. N., Pavlenko, V. P., Wilhelmsson, H., & Kogan, E. Y. 1973a Phys. Rev. Letters, 30, 49.CrossRefGoogle Scholar
Oraevskii, V. N., Pavlenko, V. P., Wilhelmsson, H., & Kogan, E. Y. 1973b Physica Scripta, 7, 217.CrossRefGoogle Scholar
Sedláček, Z. 1974 Phys. Letters, A 48, 287.CrossRefGoogle Scholar
Sedláček, Z. 1975a J. Phys. A 8, 1067.Google Scholar
Sedláček, Z. 1975b J. Phys. A 8, 1384.Google Scholar
Sedláček, Z. 1975c Czech. J. Phys. B. (To be published.)Google Scholar
Sturrock, P. A. 1962 Plasma Hydromagnetics (ed. Bershader, D.), p. 47. Stanford University Press.Google Scholar
Weiland, J., & Wilhelmsson, H. 1973 Physica Scripta, 7, 222.CrossRefGoogle Scholar
Whittaker, E. T. 1959 A Treatise on the Analytical Dynamics. Cambridge University Press.Google Scholar
Wilhelmsson, H. 1969 Proc. 3rd European Conf. on. Controlled Fusion and Plasma Physics, Utrecht, p. 36.Google Scholar