Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T06:46:31.558Z Has data issue: false hasContentIssue false

Lower-hybrid wave generation in an electron beam of finite transverse dimension

Published online by Cambridge University Press:  13 March 2009

G. B. Crew
Affiliation:
Center for Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

Abstract

The generation of lower-hybrid waves in an inhomogeneous electron beam is examined. Wave amplitudes are invariably limited by the convective nature of the instability. The self-consistent shear of the magnetic-field geometry due to the beam current is limited to the role of dividing the general problem into separate cases according to the relative orientation of the wave vector and direction of inhomogeneity. Moreover, the limiting case of small shear is smoothly connected to the case where shear is altogether negligible. Estimates of the amplification of lower-hybrid waves propagating across the electron beam are made for the various cases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions with Formulas, Graphs and Tables. National Bureau of Standards.Google Scholar
Bakshi, P., Ganguli, G. & Palmadesso, P. 1983 Phys. Fluids, 26, 1808.CrossRefGoogle Scholar
Chang, T. & Coppi, B. 1981 Geophys. Res. Lett. 8, 1253.CrossRefGoogle Scholar
Coppi, B., Pegoraro, F., Pozzoli, R. & Rewoldt, G. 1976 Nucl. Fusion, 16, 309.CrossRefGoogle Scholar
Crew, G. B. & Chang, T. S. 1985 Phys. Fluids, 28, 2382.CrossRefGoogle Scholar
Crew, G. B. & Chang, T. 1987 Physics of Space Plasmas (1985–7) (ed. Chang, T., Belcher, J., Jasperse, J. R. & Crew, G. B.), p. 55. SPI Conference Proceedings and Reprint Series, Scientific Publishers.Google Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Ganguli, G. & Bakshi, P. 1982 Phys. Fluids, 25, 1830.CrossRefGoogle Scholar
Heading, J. 1962 An Introduction to Phase-Integral Methods. Wiley.Google Scholar
Langer, R. E. 1934 Bull. Am. Math. Soc. 40, 545.CrossRefGoogle Scholar
Maggs, J. E. 1976 J. Geophys. Res. 81, 1707.CrossRefGoogle Scholar
Maggs, J. E. 1978 J. Geophys. Res. 83, 3173.CrossRefGoogle Scholar
Maggs, J. E. & Lotko, W. 1981 J. Geophys. Res. 86, 3439.CrossRefGoogle Scholar
Papadopoulos, K. & Palmadesso, P. J. 1976 Phys. Fluids, 19, 605.CrossRefGoogle Scholar
Retterer, J. M., Chang, T. & Jasperse, J. R. 1983 Geophys. Res. Lett. 10, 583.CrossRefGoogle Scholar
Retterer, J. M., Chang, T. & Jasperse, J. R. 1986 J. Geophys. Res. 91, 1609.CrossRefGoogle Scholar
Whittaker, E. T. & Watson, G. N. 1980 A Course in Modern Analysis. Cambridge University Press.Google Scholar