Published online by Cambridge University Press: 13 March 2009
A simple model of an ionizing detonation wave is studied in which the electrical conductivity jumps from zero to infinity across the wave at which a net release of exothermal energy occurs and which propagates with magnetoacoustic speed relative to the products of combustion. The upstream electric and magnetic fields are mutually orthogonal and transverse to the direction of propagation. The ratios of downstream flow parameters to those upstream and the detonation speed are presented for a range of values of the upstream electromagnetic field. It is surmised that, for a specified upstream magnetic field, physically realistic detonation waves exist only for a limited range of values of the electric field strength of invariant sign.