Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T11:06:22.178Z Has data issue: false hasContentIssue false

Inelastic collision integral approximation of the Boltzmann equation

Published online by Cambridge University Press:  13 March 2009

Pierre Ségur
Affiliation:
Centre de Physique Atomique, Equipe de Recherche Associée au CNRS no. 217 (décharges dans les gaz), Université Paul Sabatier, Toulouse
Joëlle Lerouvillois-Gaillard
Affiliation:
Centre de Physique Atomique, Equipe de Recherche Associée au CNRS no. 217 (décharges dans les gaz), Université Paul Sabatier, Toulouse

Abstract

A study is made of the inelastic collision integral of the Boltzmann equation using scattering probability formalism. The collision operators are expanded in a power series in the square root of the ratio of masses.

Furthermore, a spherical harmonic expansion is made of all the operators so obtained. These developments are valid whatever the shape of the distribution function of the particles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayet, M., Delcroix, J. L. & Denisse, J. F. 1954 J. Phys. 15, 795.Google Scholar
Bayet, M., Delcroix, J. L. & Denisse, J. F. 1955 J. Phys. 16, 274.Google Scholar
Bayet, M., Delcroix, J. L. & Denisse, J. F. 1956 J. Phys. 17, 923.Google Scholar
Bernstein, I. B. 1970 Advances in Plasma Physics, vol. 3. Interscience.Google Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Davison, B. 1958 Neutron Transport Theory. Clarendon.Google Scholar
Delcroix, J. L. 1966 Physique des Plasmas, vol. 2. Dunod.Google Scholar
Desloge, E. A. 1966 Statistical Physics. Holt, Rinehart and Winston.Google Scholar
Frost, L. S. & Phelps, A. V. 1968 Phys. Rev. 187, 1681.Google Scholar
Holstein, T. 1946 Phys. Rev. 70, 367.CrossRefGoogle Scholar
Lo Surdo, C. 1971 J. Plasma Phys. 6, 107.CrossRefGoogle Scholar
MacCormack, F. J. 1969 Phys. Rev. 178, 319.CrossRefGoogle Scholar
Naze, J. 1961 Thèse d'Etat, no. 4533, Paris.Google Scholar
Peyraud, N. 1967 J. Phys. 28, 147.CrossRefGoogle Scholar
Pozzoli, R. 1967 Il Nuovo Cimento, 50, 137.Google Scholar
Sansone, G. 1959 Orthogonal Functions. Interseience.Google Scholar
Schüller, V. & Wilhelm, J. 1972 Beitr. Plasma Phys. 12, 349.CrossRefGoogle Scholar
Schüller, V. & Wilhelm, J. 1973 Beitr. Plasma Phys. 13, 63.Google Scholar
Ségur, P. 1974 Thèse d'Etat, no. 626, Toulouse.Google Scholar
Ségur, P. & Gaillard, J. 1971 C. Acad. Sci. 272B, 917.Google Scholar
Waldmann, L. 1958 Handbuch der Physik, vol. 12. Springer Verlag.Google Scholar
Wannier, G. H. 1953 Bell. Syst. Tech. J. 32, 170.CrossRefGoogle Scholar
Wilhelm, J. & Schüller, V. 1972 Beitr. Plasma Phys. 12, 279.Google Scholar