Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T00:14:49.928Z Has data issue: false hasContentIssue false

Energy coupling among the degrees of freedom in an electron–positron plasma

Published online by Cambridge University Press:  12 January 2010

WENMIN ZHANG
Affiliation:
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, 310027 Hangzhou, China ([email protected])
M. Y. YU
Affiliation:
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, 310027 Hangzhou, China ([email protected]) Institut für Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum, Germany
A. R. KARIMOV
Affiliation:
Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412, Russia
L. STENFLO
Affiliation:
Department of Physics, Linköping University, SE-58183 Linköping, Sweden

Abstract

Nonlinear coupling of the motion in the three spatial degrees of freedom of a cold fluid electron–positron plasma is investigated. Exact solutions describing expanding flows with oscillations are obtained. It is found that the energy in the irrotational flow component is in general transferred to the rotational components, but not in the reversed direction. Furthermore, since the density evolution need not be related to all the three flow components, oscillations in one or two of the flow fields can be purely electromagnetic and are not accompanied by density oscillations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. New York: Academic.Google Scholar
[2]Dodd, R. K., Eilbeck, J. C., Gibbon, J. D. and Morris, H. C. 1982 Solitons and Nonlinear Wave Equations. London: Academic.Google Scholar
[3]Vladimirov, S. V., Yu, M. Y. and Tsytovich, V. N. 1994 Phys. Rep. 241, 1.CrossRefGoogle Scholar
[4]Nijboer, R. J., Lifschitz, A. E. and Goedbloed, J. P. 1997 J. Plasma Phys. 58, 101.CrossRefGoogle Scholar
[5]Dubin, D. H. E. and O'Neil, T. M. 1999 Rev. Mod. Phys. 71, 87.CrossRefGoogle Scholar
[6]Haller, G. 2001 Physica D 149, 248.Google Scholar
[7]Stenflo, L. and Yu, M. Y. 2002 Phys. Plasmas 9, 5129; ibid. 2007 Phys. Scr. 76, C1.CrossRefGoogle Scholar
[8]Amiranashvili, Sh., Yu, M. Y. and Stenflo, L. 2002 Phys. Rev. E 65, 046402; ibid. 2003 Phys. Plasmas 10, 1239.Google Scholar
[9]Karimov, A. R. 2009 J. Plasma Phys. 75, 817.CrossRefGoogle Scholar
[10]Karimov, A. R., Stenflo, L. and Yu, M. Y. 2009 Phys. Plasmas 16, 062313.CrossRefGoogle Scholar
[11]Karimov, A. R., Stenflo, L. and Yu, M. Y. 2009 Phys. Plasmas 16, 102303.CrossRefGoogle Scholar
[12]Yu, M. Y., Shukla, P. K. and Rao, N. N. 1984 Astrophys. Space Sci. 107, 327; Yu, M. Y. and Rao, N. N. 1985 Phys. Rev. A 31, 4012; Yu, M. Y., Shukla, P. K. and Stenflo, L. 1986 Astrophys. J. 309, L63.CrossRefGoogle Scholar
[13]Begelman, M. C., Blandford, R. D. and Rees, M. D. 1985 Rev. Mod. Phys. 56, 255, and the references therein.CrossRefGoogle Scholar