Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T05:05:37.619Z Has data issue: false hasContentIssue false

Criteria governing ion-acoustic waves in two-ion plasmas

Published online by Cambridge University Press:  13 March 2009

I. M. A. Gledhill
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa
M. A. Hellberg
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa

Abstract

It has previously been observed that ion-acoustic waves exhibit two types of behaviour as the proportion of light ions in a mixed plasma is varied. Either the principal mode of the heavy ion plasma changes continuously into that of the light ion plasma, or it becomes too heavily damped to be observable while a second wave appears and develops into the principal light ion mode. A similar phenomenon is observed as the wavenumber or the ratio of electron temperature to ion temperature is changed. Criteria determining which behaviour occurs are derived by considering the form of the dielectric response function. The results may also be used to predict which of the higher-order modes of the plasma is involved in the process, and whether degeneracies exist in the dispersion relation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexeff, I., Jones, W. D. & Montgomery, D. 1967 Phys. Rev. Lett. 19, 422.CrossRefGoogle Scholar
Barberio-Corsetti, P. 1970 Princeton University, Plasma Physics Laboratory Report MATT-773.Google Scholar
Barnard, A. J. & Bernard, J. E. 1985 Can. J. Phys. 63, 354.CrossRefGoogle Scholar
D'Angelo, N. V., Goeler, S. & Ohe, T. 1966 Phys. Fluids, 9, 1605.CrossRefGoogle Scholar
Derfler, H. & Simonen, T. C. 1969 Phys. Fluids, 12, 269.CrossRefGoogle Scholar
Doucet, H. J., Alexeff, I. & Jones, W. D. 1968 Phys. Fluids, 11, 2451.CrossRefGoogle Scholar
Feix, M. 1964 Phys. Lett. 9, 123.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion function. Academic.Google Scholar
Fried, B. D. & Gould, R. W. 1961 Phys. Fluids, 4, 139.CrossRefGoogle Scholar
Fried, B. D., White, R. B. & Samec, T. K. 1971 Phys. Fluids, 14, 2388.CrossRefGoogle Scholar
Gledhill, I. M. A., Dell, M. P. & Hellberg, M. A. 1983 Proceedings of 16th International Conference on Phenomena in Ionised Gases, Düsseldorf, p. 650.Google Scholar
Gledhill, I. M. A. & Hellberg, M. A. 1982 Proceedings of International Conference on Plasma Physics, Göteborg, p. 315.Google Scholar
Grésillon, D., Olivain, J., Truc, A. & Lenner, T. 1984 Phys. Fluids, 4, 1030.CrossRefGoogle Scholar
Hershkowitz, N. & Lamm, A. J. 1980 IEEE Trans. Plasma Sci. PS-8, 275.CrossRefGoogle Scholar
Hirose, A., Alexeff, I. & Jones, W. D. 1970 Phys. Fluids, 13, 1290.CrossRefGoogle Scholar
Ikezawa, S. & Nakamura, Y. 1981 J. Phys. Soc. Jpn. 50, 962.CrossRefGoogle Scholar
Nakamura, M., Ito, M., Nakamura, Y. & Itoh, T. 1975 Phys. Fluids, 18, 651.CrossRefGoogle Scholar
Nakamura, Y., Nakamura, M. & Itoh, T. 1976 a University of Tokyo, Institute of Space and Aeronautical Science, Research Note RN13.Google Scholar
Nakamura, Y., Nakamura, M. & Itoh, T. 1976 b Phys. Rev. Lett. 37, 209.CrossRefGoogle Scholar
Tanaca, H., Hirose, A. & Koganei, M. 1967 Phys. Rev. 161, 94.CrossRefGoogle Scholar
Tran, M. Q. & Coquerand, S. 1975 a Helv. Phys. Acta, 48, 477.Google Scholar
Tran, M. Q. & Coquerand, S. 1975 b Helv. Phys. Acta, 48, 488.Google Scholar
Tran, M. Q. & Coquerand, S. 1976 Phys. Rev. 14A, 2301.CrossRefGoogle Scholar