Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T06:51:24.519Z Has data issue: false hasContentIssue false

Coherent quantum hollow beam creation in a plasma wakefield accelerator

Published online by Cambridge University Press:  21 February 2013

D. JOVANOVIĆ
Affiliation:
Institute of Physics, University of Belgrade, Belgrade, Serbia ([email protected])
R. FEDELE
Affiliation:
Dipartimento di Scienze Fisiche, Universitá “Federico II” and INFN Sezione di Napoli, Italy
F. TANJIA
Affiliation:
Dipartimento di Scienze Fisiche, Universitá “Federico II” and INFN Sezione di Napoli, Italy
S. DE NICOLA
Affiliation:
Dipartimento di Scienze Fisiche, Universitá “Federico II” and INFN Sezione di Napoli, Italy Istituto Nazionale di Ottica – C.N.R., Pozzuoli (NA), Italy
M. BELIĆ
Affiliation:
Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar

Abstract

A theoretical investigation of the propagation of a relativistic electron (or positron) particle beam in an overdense magnetoactive plasma is carried out within a fluid plasma model, taking into account the individual quantum properties of beam particles. It is demonstrated that the collective character of the particle beam manifests mostly through the self-consistent macroscopic plasma wakefield created by the charge and the current densities of the beam. The transverse dynamics of the beam–plasma system is governed by the Schrödinger equation for a single-particle wavefunction derived under the Hartree mean field approximation, coupled with a Poisson-like equation for the wake potential. These two coupled equations are subsequently reduced to a nonlinear, non-local Schrödinger equation and solved in a strongly non-local regime. An approximate Glauber solution is found analytically in the form of a Hermite–Gauss ring soliton. Such non-stationary (‘breathing’ and ‘wiggling’) coherent structure may be parametrically unstable and the corresponding growth rates are estimated analytically.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belić, M. R. and Zhong, W.-P. 2009 Two-dimensional spatial solitons in highly nonlocal nonlinear media. EPJ D 53, 97106.Google Scholar
Bonifacio, R., Cola, M. M., Piovella, N. and Robb, G. R. M. 2005 A quantum model for collective recoil lasing. EPL (Europhys. Lett.) 69, 5560.CrossRefGoogle Scholar
Briedis, D., Petersen, D. E., Edmundson, D., Krolikowski, W. and Bang, O. 2005 Ring vortex solitons in nonlocal nonlinear media. Opt. Exp. 13, 435.CrossRefGoogle ScholarPubMed
Chen, P., Dawson, J. M., Huff, R. W. and Katsouleas, T. 1985 Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693696.CrossRefGoogle ScholarPubMed
de Martino, S., de Siena, S. and Fedele, R. 1997 Locally controlled coherence in the longitudinal dynamics of electron bunches in particle accelerators. Phys. Scr. 56, 426429.CrossRefGoogle Scholar
de Nicola, S., Fedele, R., ManZ'ko, V. I. and Miele, G. 1995 Coherent states for particle beams in the thermal wave model. Phys. Scr. 52, 191198.CrossRefGoogle Scholar
Fedele, R., Tanjia, F., de Nicola, S., Jovanović, D. and Shukla, P. K. 2012 Quantum ring solitons and nonlocal effects in plasma wake field excitations. Phys. Plasmas 19, 102106.CrossRefGoogle Scholar
Glauber, R. J. 1963 The quantum theory of optical coherence. Phys. Rev. 130, 25292539.CrossRefGoogle Scholar
He, Y. J., Malomed, B. A., Mihalache, D. and Wang, H. Z. 2008 Crescent vortex solitons in strongly nonlocal nonlinear media. Phys. Rev. A 78 (2), 023824.CrossRefGoogle Scholar
Huang, Z., Chen, P. and Ruth, R. D. 1995 Radiation reaction in a continuous focusing channel. Phys. Rev. Lett. 74, 17591762.CrossRefGoogle Scholar
Huang, Z. and Ruth, R. D. 1998 Effects of focusing on radiation damping and quantum excitation in electron storage rings. Phys. Rev. Lett. 80, 23182321.CrossRefGoogle Scholar
Jagannathan, R., Simon, R., Sudarshan, E. C. G. and Mukunda, N. 1989 Quantum theory of magnetic electron lenses based on the Dirac equation. Phys. Lett. A 134, 457464.CrossRefGoogle Scholar
Khan, S. A. and Jagannathan, R. 1995 Quantum mechanics of charged-particle beam transport through magnetic lenses. Phys. Rev. E 51, 25102515.CrossRefGoogle ScholarPubMed
Królikowski, W., Bang, O., Nikolov, N. I., Neshev, D., Wyller, J., Rasmussen, J. J. and Edmundson, D. 2004 Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media. J. Opt. B 6, 288.CrossRefGoogle Scholar
Preparata, G. 1988 Quantum field theory of the free-electron laser. Phys. Rev. A 38, 233237.CrossRefGoogle ScholarPubMed
Rosenzweig, J. B., Cline, D. B., Cole, B., Figueroa, H. and Gai, W. 1988 Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61, 98101.CrossRefGoogle ScholarPubMed
Schrödinger, E. 1926 Der stetige Übergang von der Mikro-zur Makromechanik. Naturwissenschaften 14, 664666.CrossRefGoogle Scholar
Schulten, K. 2000 Notes on Quantum Mechanics. Urbana, IL: University of Illinois at Urbana Champaign.Google Scholar
Sokolov, A. A. and Ternov, I. M. 1963 O . Doklady Akad. Nauk SSSR (in Russian) 153, 1052.Google Scholar
Zhang, S. and Yi, L. 2009 Two-dimensional Hermite–Gaussian solitons in strongly nonlocal, nonlinear medium with rectangular boundaries. Opt. Comm. 282, 16541658.CrossRefGoogle Scholar