Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T10:40:16.216Z Has data issue: false hasContentIssue false

Centrifugal instability in a weakly magnetized rotating plasma column

Published online by Cambridge University Press:  22 June 2023

S. Aggarwal*
Affiliation:
Aix-Marseille Université, CNRS, PIIM UMR 7345, Marseille, France
Y. Camenen
Affiliation:
Aix-Marseille Université, CNRS, PIIM UMR 7345, Marseille, France
A. Escarguel
Affiliation:
Aix-Marseille Université, CNRS, PIIM UMR 7345, Marseille, France
A. Poyé
Affiliation:
Aix-Marseille Université, CNRS, PIIM UMR 7345, Marseille, France
*
Email address for correspondence: [email protected]

Abstract

A two-fluid model is developed to study the stability of weakly magnetized rotating plasma columns. Previous works have shown that rotating plasma columns are prone to centrifugal flute modes. Most of these models are based on the low-frequency assumption which is valid when the instability frequency and the plasma azimuthal frequency are small compared with the ion cyclotron frequency. This assumption is challenged in many laboratory plasma devices, including weakly magnetized plasma columns. A radially global dispersion relation relaxing the low-frequency approximation and applicable in these devices is derived. The validity domain of the low-frequency approximation is discussed. In addition, the impact of the radial boundary on the linear stability is investigated and comparison with results obtained in the radially local approximation are performed.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abolmasov, S.N. 2012 Physics and engineering of crossed-field discharge devices. Plasma Sources Sci. Technol. 21 (3), 035006.CrossRefGoogle Scholar
Annaratone, B.M., Escarguel, A., Lefevre, T., Rebont, C., Claire, N. & Doveil, F. 2011 Rotation of a magnetized plasma. Phys. Plasmas 18, 032108.CrossRefGoogle Scholar
Brochard, F., Gravier, E. & Bonhomme, G. 2005 Transition from flute modes to drift waves in a magnetized plasma column. Phys. Plasmas 12 (6).CrossRefGoogle Scholar
Chen, F.F. 1966 Microinstability and shear stabilization of a low-$\beta$, rotating, resistive plasma. Phys. Fluids 9 (5), 965981.CrossRefGoogle Scholar
Ellison, C.L., Raitses, Y. & Fisch, N.J. 2012 Cross-field electron transport induced by a rotating spoke in a cylindrical hall thruster. Phys. Plasmas 19 (1), 013503.CrossRefGoogle Scholar
Escarguel, A. 2010 Optical diagnostics of a low frequency instability rotating around a magnetized plasma column. Eur. Phys. J. D 56 (2), 209214.CrossRefGoogle Scholar
Fridman, A.M. 1964 On the phenomena of the critical magnetic field and anomalous diffusion in weakly ionized plasma. Sov. Phys. Dokl. 9, 75.Google Scholar
Furno, I., Agnello, R., Fantz, U., Howling, A., Jacquier, R., Marini, C., Plyushchev, G., Guittienne, P. & Simonin, A. 2017 Helicon wave-generated plasmas for negative ion beams for fusion. In EPJ Web of Conferences, vol. 157. EDP Sciences.CrossRefGoogle Scholar
Gravier, E., Brochard, F., Bonhomme, G., Pierre, T. & Briançon, J.L. 2004 Low-frequency instabilities in a laboratory magnetized plasma column. Phys. Plasmas 11 (2), 529537.CrossRefGoogle Scholar
Gueroult, R., Rax, J.-M. & Fisch, N.J. 2017 Centrifugal instability in the regime of fast rotation. Phys. Plasmas 24 (8), 082102.CrossRefGoogle Scholar
Hoh, F.C. 1963 Simple picture of the finite larmor radius stabilization effect. Phys. Fluids 6 (9), 13591359.CrossRefGoogle Scholar
Ilić, D.B., Rognlien, T.D., Self, S.A. & Crawford, F.W. 1973 Low-frequency flute instabilities of a hollow cathode arc discharge: theory and experiment. Phys. Fluids 16 (7), 10421053.CrossRefGoogle Scholar
Jaeger, S. 2010 Etude theorique et experimentale des instabilites basses frequences dans un plasma en champs magnetique et electrique croises. PhD thesis, Aix-Marseille University.Google Scholar
Jassby, D.L. 1972 Transverse velocity shear instabilities within a magnetically confined plasma. Phys. Fluids 15 (9), 15901604.CrossRefGoogle Scholar
Lehnert, B. 1971 Rotating plasmas. Nucl. Fusion 11 (5), 485.CrossRefGoogle Scholar
Matsukuma, M., Pierre, T., Escarguel, A., Guyomarc'h, D., Leclert, G., Brochard, F., Gravier, E. & Kawai, Y. 2003 Spatiotemporal structure of low frequency waves in a magnetized plasma device. Phys. Lett. A 314 (1), 163167.CrossRefGoogle Scholar
Parker, J.B., Raitses, Y. & Fisch, N.J. 2010 Transition in electron transport in a cylindrical hall thruster. Appl. Phys. Lett. 97 (9).CrossRefGoogle Scholar
Perkins, F.W. & Jassby, D.L. 1971 Velocity shear and low-frequency plasma instabilities. Phys. Fluids 14 (1), 102115.CrossRefGoogle Scholar
Pierre, T. 2016 The slow collisional $e\times b$ ion drift characterized as the major instability mechanism of a poorly magnetized plasma column with an inward-directed radial electric field. Phys. Plasmas 23 (4), 042110.CrossRefGoogle Scholar
Plihon, N., Bousselin, G., Palermo, F., Morales, J., Bos, W., Godeferd, F., Bourgoin, M., Pinton, J.-F., Moulin, M. & Aanesland, A. 2014 Flow dynamics and magnetic induction in the von-karman plasma experiment. J. Plasma Phys.Google Scholar
Rax, J.M., Fruchtman, A., Gueroult, R. & Fisch, N.J. 2015 Breakdown of the brillouin limit and classical fluxes in rotating collisional plasmas. Phys. Plasmas 22 (9), 092101.CrossRefGoogle Scholar
Rognlien, T.D. 1973 Low-frequency flute instabilities of a bounded plasma column. J. Appl. Phys. 44 (8), 35053512.CrossRefGoogle Scholar
Rosenbluth, M.N., Krall, N.A. & Rostoker, N. 1962 Finite larmor radius stabilization of “weakly” unstable confined plasmas. Tech. Rep. General Dynamics Corp.Google Scholar
Sekerak, J.M., Longmier, W.B., Gallimore, A.D., Brown, L.D., Hofer, R.R. & Polk, E.J. 2015 Azimuthal spoke propagation in hall effect thrusters. IEEE Trans. Plasma Sci. 43 (1), 7285.CrossRefGoogle Scholar
Smolyakov, A.I., Chapurin, O., Frias, W., Koshkarov, O., Romadanov, I., Tang, T., Umansky, M., Raitses, Y., Kaganovich, I.D. & Lakhin, V.P. 2016 Fluid theory and simulations of instabilities, turbulent transport and coherent structures in partially-magnetized plasmas of discharges. Plasma Phys. Control. Fusion 59 (1), 014041.CrossRefGoogle Scholar
Stringer, T.E. & Schmidt, G. 1967 Flute instability in the presence of non-uniform electric fields. Plasma Phys. 9 (1).CrossRefGoogle Scholar
Whittaker, E.T. & Watson, G.N. 1966 A Course of Modern Analysis. Cambridge University Press.Google Scholar