Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:25:25.331Z Has data issue: false hasContentIssue false

An analytical local approach to flux-conserving tokamak equilibrium

Published online by Cambridge University Press:  13 March 2009

J. J Ramos
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

Abstract

A solution to the Grad–Shafranov equation is obtained by expanding the MHD equilibrium functions in half-integer powers of the poloidal flux, about the magnetic axis. The poloidal angle dependence of the expansion coefficients is solved for, from a sequence of ordinary linear differential equations with constant coefficients. Flux conservation is achieved after calculating the inverse rotational transform, by requiring it to be invariant during the pressure rise.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clarke, J. F. & Sigmar, D. J. 1977 Phys. Rev. Lett. 38, 70.CrossRefGoogle Scholar
Dory, R. A. & Peng, Y. K. M. 1977 Nucl. Fusion, 17, 21.CrossRefGoogle Scholar
Englade, R. 1977 Massachusetts Institute of Technology, RLE Report PRR-77/23.Google Scholar
Green, J. M., Johnson, J. L. & Weimer, K. E. 1971 Phys. Fluids, 14, 671.CrossRefGoogle Scholar
Laing, E. W., Roberts, S. J. & Whipple, R. T. P. 1959 J. Nucl. Energy: Part C 1, 49.CrossRefGoogle Scholar
Shafranov, V. D. 1958 Soviet Phys. JETP, 8, 545.Google Scholar
Solov'ev, L. S. & Shafranov, V. D. 1970 Reviews of Plasma Physics, vol. 5, p. 57. Consultants Bureau.Google Scholar
Solov'ev, L. S. 1975 Reviews of Plasma Physics, vol. 6, p. 239. Consultants Bureau.Google Scholar
Ware, Ax. A. & Haas, F. A. 1966 Phys. Fluids, 9. 956.CrossRefGoogle Scholar