Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T19:54:10.712Z Has data issue: false hasContentIssue false

Organic-walled microfossils of the mid-Neoproterozoic Alinya Formation, Officer Basin, Australia

Published online by Cambridge University Press:  14 September 2016

Leigh Anne Riedman
Affiliation:
Department of Earth Science, University of California, Santa Barbara, CA 93106, USA 〈[email protected]〉, 〈[email protected] New address: Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA 〈[email protected]
Susannah Porter
Affiliation:
Department of Earth Science, University of California, Santa Barbara, CA 93106, USA 〈[email protected]〉, 〈[email protected]

Abstract

Estimates of Precambrian eukaryotic diversity and disparity indicate broad trends of increase in the Mesoproterozoic Era, leading to a peak and then rapid decline by ca. 750 Ma. The organic-walled microfossil assemblage presented here is representative of that mid-Neoproterozoic height of eukaryotic species richness. Organic-rich shales and siltstones of the mid-Neoproterozoic upper Alinya Formation, eastern Officer Basin, Australia, preserve an abundant and diverse assemblage of organic-walled microfossils deposited in a low-latitude, shallow marine setting. Use of scanning electron microscopy (SEM) revealed an unexpected level of morphological detail not visible in transmitted light microscopy. This led to the recognition of new species as well as establishment of degradational sequences, which aid in fossil recognition. In total, 26 taxa are described here; these include 21 previously named forms, four newly described species (Caelatimurus foveolatus, Culcitulisphaera revelata, Karenagare alinyaensis, and Morgensternia officerensis), and one new combination (Vidalopalla verrucata).

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agić, H., Moczydłowska, M., and Yin, L-M., 2015, Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China: Journal of Paleontology, v. 89, p. 2850.CrossRefGoogle Scholar
Allison, C.W., and Awramik, S.M., 1989, Organic-walled microfossils form the earliest Cambrian or latest Proterozoic Tindir Group Rocks, northwest Canada: Precambrian Research, v. 43, p. 253294.CrossRefGoogle Scholar
Amard, B., 1984, Nouveaux éléments de datation de la couverture Protérozoïque du craton ouest-africain: un assemblage de microfossiles (Acritarches) caractéristique du Riphéen supérieur dans la formation d’Atar (Mauritanie): Comptes rendus des séances de l’Academie des sciences. Série 2, Mécanique-physique, Chimie, Sciences de l’univers, Sciences de la Terre, v. 299, p. 14051410.Google Scholar
Arouri, K., Greenwood, P.F., and Walter, M.R., 1999, A possible chlorophycean affinity of some Neoproterozoic acritarchs: Organic Geochemistry, v. 30, p. 13231337.Google Scholar
Aseeva, E.A., 1974, O spirale-i kol’tsevidnykh obrazovaniiakh v verkhnedokembriiskikh otlozheniiakh Podolii [On spiral and ringformed structures in the upper Precambrian deposits of Podolia]: Paleontologicheskii Sbornik, v. 11, p. 9598, 1 plate [in Russian].Google Scholar
Battison, L., and Brasier, M.D., 2012, Remarkably preserved prokaryote and eukaryote microfossils within 1 Ga-old lake phosphates of the Torridon Group, NW Scotland: Precambrian Research, v. 196–197, p. 204217.Google Scholar
Berney, C., and Pawlowski, J., 2006, A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record: Proceedings of the Royal Society, B, v. 273, p. 18671872.CrossRefGoogle ScholarPubMed
Buick, R., and Knoll, A.H., 1999, Acritarchs and microfossils from the Mesoproterozoic Bangemall Group, northwestern Australia: Journal of Paleontology, v. 73, p. 744764.CrossRefGoogle ScholarPubMed
Butterfield, N.J., 2005, Probable Proterozoic fungi: Paleobiology, v. 31, p. 165182.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N.J., and Rainbird, R.H., 1998, Diverse organic-walled fossils, including “possible dinoflagellates” from the early Neoproterozoic of arctic Canada: Geology, v. 26, p. 963966.2.3.CO;2>CrossRefGoogle Scholar
Butterfield, N.J., Knoll, A.H., and Swett, K., 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen: Fossils and Strata, v. 34, p. 184.CrossRefGoogle Scholar
Canfield, D.E., 2014, Oxygen: A Four Billion Year History: Princeton, Princeton University Press, 224 p.Google Scholar
Cohen, P.A., and Macdonald, F.A., 2015, The Proterozoic record of eukaryotes: Paleobiology, first look view, 23 p. doi:10.1017/pab.2015.25.CrossRefGoogle Scholar
Combaz, A., Lang, F.W., and Pansart, J., 1967, Les “Leiofusidae” Eisenack, 1938: Review of Palaeobotany and Palynology, v. 1, p. 291307.CrossRefGoogle Scholar
Cotter, K.L., 1997, Neoproterozoic microfossils from the Officer Basin, Western Australia: Alcheringa, v. 21, p. 247270.Google Scholar
Cotter, K.L., 1999, Microfossils from Neoproterozoic Supersequence 1 of the Officer Basin, Western Australia: Alcheringa, v. 23, p. 6386.Google Scholar
Couëffé, R., and Vecoli, M., 2011, New sedimentological and biostratigraphic data in the Kwahu Group (Meso- to Neo-Proterozoic), southern margin of the Volta Basin, Ghana: stratigraphic constraints and implications on regional lithostratigraphic correlations: Precambrian Research, v. 189, p. 155175.Google Scholar
Dong, L., Xiao, S., Shen, B., Zhou, C., Li, G., and Yao, J., 2009, Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area (Tarim Block, northwestern China): Journal of Paleontology, v. 83, p. 3044.Google Scholar
Downie, C., 1963, ‘Hystrichospheres’ (acritarchs) and spores of the Wenlock Shales (Silurian) of Wenlock, England: Palaeontology, v. 6, p. 625652.Google Scholar
Downie, C., and Sarjeant, W.A.S., 1963, On the interpretation and status of some hystrichosphere genera: Palaeontology, v. 6, p. 8396.Google Scholar
Downie, C., Evitt, W.R., and Sarjeant, W.A.S., 1963, Dinoflagellates, Hystrichospheres, and the Classification of the Acritarchs: Stanford, School of Earth Sciences, Stanford University, 16 p.Google Scholar
Eisenack, A, 1938, Neue Mikrofossilien des baltischen Silurs. IV: Palaeontologisch Zeitschrift, v. 19, no. 3–4, p. 217243, pl. 15, 16 [in German].Google Scholar
Eisenack, A., 1958a, Mikrofossilien aus dem Ordovizium des Baltikums. 1. Markasitschicht, Dictyonema-Schiefer, Glaukonitsand, Glaukonitkalk: Senckenbergiana Lethaea. v. 39, no. 5/6, p. 389405 [in German].Google Scholar
Eisenack, A., 1958b, Tasmanites Newton 1875 und Leiosphaeridia n. g. als Gattungen der Hystrichosphaeridea: Palaeontographica, Abteilung A., v. 110, no. 1–3, p. 119, pl. 1, 2 [in German].Google Scholar
Eisenack, A., 1965, Mikrofossilien aus dem Silur Gotlands Hystrichosphären, Problematika: Neues Jarbuch für Geologie und Paläontologie Abhandlungen, v. 122, p. 257274 [in German].Google Scholar
Eisenack, A., 1976, Mikrofossilien aus dem Vaginatenkalk von Hälludden, Öland: Palaeontographica, Abteilung A., v. 154, no. 4–6, p. 181203, pl. 1–7 [in German].Google Scholar
Evitt, W.R., 1963, A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II: Proceedings of the National Academy of Sciences, v. 49, p. 298302.CrossRefGoogle ScholarPubMed
Fensome, R.A., Williams, G.L., Barss, M.S., Freeman, J.M., and Hill, J.M., 1990, Acritarchs and fossil prasinophytes: and index to genera, species and infraspecific taxa: American Association of Stratigraphic Palynologists Foundation, AASP Contributions Series Number 25, 771 p.Google Scholar
Gao, L., Xing, Y., and Liu, G., 1995, Neoproterozoic micropalaeoflora from Hunjiang area, Jilin province and its sedimentary environment: Professional Papers of Stratigraphy and Palaeontology, v. 26, p. 123, and 4 plates.Google Scholar
Golub, I.N., 1979, Novaia gruppa problematichnykh mikroobrazovanii v vendskikh otlozheniiakh orshanskoi vpadiny (Russkaia platforma) [A new group of problematic microforms in the Vendian Orsha depressions (Russian Platform)], in Sokolov, B.S., ed., Paleontologiia Dokembriia i Rannego Kembriia [Precambrian and Early Cambrian Paleontology]: Leningrad, Nauka, p. 147155 [in Russian].Google Scholar
Gravestock, D.I., 1997, Geological setting and structural history, in Morton, J.G.G., and Drexel, J.F., eds., The Petroleum Geology of South Australia. Vol 3: Officer Basin. South Australia: Department of Mines and Energy Resources, Report Book, 97/19, p. 3545.Google Scholar
Gray, J., and Boucot, A.J., 1989, Is Moyeria a euglenoid?: Lethaia, v. 22, p. 447456.CrossRefGoogle Scholar
Grey, K., 1999, A modified palynological preparation technique for the extraction of large Neoproterozoic acanthomorph acritarchs and other acid-insoluble microfossils: Western Australia Geological Survey, Record 1999/10, 23 p.Google Scholar
Grey, K., 2005, Ediacaran palynology of Australia: Memoirs of The Association of Australiasian Palaeontologists, v. 31, 439 p.Google Scholar
Grey, K., and Willman, S., 2009, Taphonomy of Ediacaran acritarchs from Australia: significance for taxonomy and biostratigraphy: Palaios, v. 24, p. 239256.CrossRefGoogle Scholar
Grey, K., Hill, A.C., and Calver, C., 2011, Biostratigraphy and stratigraphic subdivision of Cryogenian successions of Australia in global context, in Arnaud, E., Halverson, G.P., and Shields-Zhou, G., eds., The Geological Record of Neoproterozoic Glaciations: London, Geological Society, Memoirs, v. 36, p. 113134.Google Scholar
Guan, B., Geng, W., Rong, Z., and Du, H., 1988, The middle and upper Proterozoic in the northern slope of the eastern Qinling Ranges, Henan, China, ZhengZhou, China: Henan Science and Technology Press, 210 p.Google Scholar
Halverson, G.P., Hoffman, P.F., Schrag, D.P., Maloof, A.C., and Rice, A.H.N., 2005, Toward a Neoproterozoic composite carbon-isotope record: Geological Society of America Bulletin, v. 117, p. 11811207.CrossRefGoogle Scholar
He, Y., Zhao, G., Sun, M., and Xia, X., 2009, SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton: Precambrian Research, v. 168, p. 213222.Google Scholar
Hermann, T.N., 1974, Nakhodki massovykh skoplenii trikhomov v rifee [Discovery of Massive Clusters of Trichomes in the Riphean], in Timofeev, B.V., ed., Mikrofitofossilii Proterozoia i rannego Paleozoia SSSR [Microfossils of the Proterozoic and early Paleozoic, USSR], Leningrad, Nauka, p. 610 [in Russian].Google Scholar
Hermann, T.N., 1990, Organic World One Billion Years Ago: Leningrad, Nauka, 51 p.Google Scholar
Hill, A.C., 2005, Stable isotope stratigraphy, GSWA Lancer 1, Officer Basin, western Australia, in Mory, A.J., and Haines, P.W., eds., GSWA Lancer 1 Well Completion Report (Interpretive Papers), Officer and Gunbarrel Basins, Western Australia: Western Australia Geological Survey, Record 2005/4, p. 111.Google Scholar
Hill, A.C., and Walter, M.R., 2000, Mid-Neoproterozoic (~830–750 Ma) isotope stratigraphy of Australia and global correlation: Precambrian Research, v. 100, p. 181211.CrossRefGoogle Scholar
Hill, A.C., Cotter, K.L., and Grey, K., 2000, Mid-Neoproterozoic biostratigraphy and isotope stratigraphy in Australia: Precambrian Research, v. 100, p. 281298.Google Scholar
Hill, A.C., Grey, K., Gostin, V.A., and Webster, L.J., 2004, New records of Late Neoproterozoic Acraman ejecta in the Officer Basin: Australian Journal of Earth Sciences, v. 51, p. 4751.Google Scholar
Hofmann, H.J., 1999, Global distribution of the Proterozoic sphaeromorph acritarch Valeria lophostriata (Jankauskas): Acta Micropalaeontologica Sinica, v. 16, p. 215224.Google Scholar
Hofmann, H.J., and Jackson, G.D., 1994, Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada: Memoir, The Paleontological Society, v. 37, p. 139.Google Scholar
Horodyski, R.J., Bloeser, B., and Vonder Haar, S., 1977, Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico: Journal of Sedimentary Petrology, v. 47, p. 680696.Google Scholar
Huntley, J.W., Xiao, S., and Kowalewski, M., 2006, 1.3 Billion years of acritarch history: An empirical morphospace approach: Precambrian Research, v. 144, p. 5268.Google Scholar
Jankauskas, T.V., 1979, Srednerifeyski microbiota Yuzhnogo Urala i Bashkirskogo Priural’ya [Middle Riphean microbiota of the southern Urals and the Ural region in Bashkiria]: Akademii Nauk SSSR, Doklady, v. 248, p. 190193 [1981, v. 248, p. 51–54 for English version].Google Scholar
Jankauskas, T. V., 1980, Shishenyakskaya mikrobiota verkhnego rifeya yuzhnogo Urala [Shisheniak microbiota of the upper Riphean of the southern Urals]: Doklady Akademii Nauk SSSR, v. 251, no. 1, p. 190192.Google Scholar
Jankauskas, T.V., 1982, Mikrofossilii rifeiia Iuzhnogo Urala [Riphean microfossils of the Southern Urals], in Keller, B.M., ed., Stratotip Rifeya-Paleontologiya paleomagnetizm [Riphean Stratotype: Paleontology and Paleomagnetism]: Akademiya Nauk SSSR Transactions, v. 368, p. 84120, plates, p. 31–48 [in Russian].Google Scholar
Jankauskas, T.V., Mikhailova, N.S., and Hermann, T.N., eds., 1989, Mikrofossilii Dokembriia SSSR [Precambrian Microfossils of the USSR], Leningrad, Nauka, 191 p. [in German].Google Scholar
Javaux, E.J., 2011, Early Eukaryotes in Precambrian oceans, in Gargaud, M., Lopez-Garcia, P., and Martin, H., eds., Origins and Evolution of Life: An Astrobiological Perspective, New York, Cambridge University Press, p. 414449.Google Scholar
Javaux, E.J., Knoll, A.H., and Walter, M.R., 2001, Morphological and ecological complexity in early eukaryotic ecosystems: Nature, v. 412, p. 6669.Google Scholar
Javaux, E.J., Knoll, A.H., and Walter, M. R., 2003, Recognizing and interpreting the fossils of early eukaryotes: Origins of Life and evolution of the Biosphere, v. 33, p. 7594.Google Scholar
Javaux, E.J., Knoll, A.H., and Walter, M.R., 2004, TEM evidence for eukaryotic diversity in mid-Proterozoic oceans: Geobiology, v. 2, p. 121132.CrossRefGoogle Scholar
Kaufman, A.J., Knoll, A.H., and Awramik, S.M., 1992, Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case: Geology, v. 20, p. 181185.Google Scholar
Knoll, A. H., 1984, Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard: Journal of Paleontology, v. 58, p. 131162.Google Scholar
Knoll, A.H., 1992, Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard: Palaeontology, v. 35, p. 715774.Google ScholarPubMed
Knoll, A.H., 1994, Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo: Proceedings of the National Academy of Sciences, v. 91, p. 67436750.Google Scholar
Knoll, A.H., 1996, Archean and Proterozoic paleontology, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and Applications, Volume 1: American Association of Stratigraphic Palynologists Foundation, p. 5180.Google Scholar
Knoll, A.H., 2011, The multiple origins of complex multicellularity: Annual Reviews in Earth and Planetary Sciences, v. 39, p. 217239.CrossRefGoogle Scholar
Knoll, A.H., and Barghoorn, E.S., 1975, Precambrian eukaryotic organisms: a reassessment of the evidence: Science, v. 190, p. 5254.Google Scholar
Knoll, A.H., Swett, K., and Mark, J., 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate: Journal of Paleontology, v. 65, p. 531570.Google Scholar
Knoll, A.H., Javaux, E.J., Hewitt, D., and Cohen, P., 2006, Eukaryotic organisms in Proterozoic oceans: Philosophical Transactions of the Royal Society, B, v. 361, p. 10231038.Google Scholar
Li, Z.X., et al, 2008, Assembly, configuration, and break-up history of Rodinia: a synthesis: Precambrian Research, v. 160, p. 179210.CrossRefGoogle Scholar
Lindsay, J.F., and Leven, J.H., 1996, Evolution of a Neoproterozoic to Palaeozoic intracratonic setting, Officer Basin, South Australia: Basin Research, v. 8, p. 403424.Google Scholar
Lücking, R., Huhndorf, S., Pfister, D.H., Plata, E.R., and Lumbsch, H.T., 2009, Fungi evolved on the right track: Mycologica, v. 101, p. 810822.Google Scholar
Macdonald, F.A., Schmitz, M.D., Crowley, J.L., Roots, C.F., Jones, D.S., Maloof, A.C., Strauss, J.V., Cohen, P.A., Johnston, D.T., and Schrag, D.P., 2010a, Calibrating the Cryogenian: Science, v. 327, p. 12411243.Google Scholar
Macdonald, F.A., Cohen, P.A., Dudás, F.Ö., and Schrag, D.P., 2010b, Early Neoproterozoic scale microfossils in the Lower Tindir Group of Alaska and the Yukon Territory: Geology, v. 38, p. 143146.Google Scholar
Mankiewicz, C., 1992, Obruchevella and other microfossils in the Burgess Shale: preservation and affinity: Journal of Paleontology, v. 66, p. 717729.Google Scholar
Meyer, K.M., and Kump, L.R., 2008, Oceanic euxinia in Earth history: Causes and Consequences: Annual Review of Earth and Planetary Sciences, v. 36, p. 251288.Google Scholar
Moczydłowska, M., 2008, New records of late Ediacaran microbiota from Poland: Precambrian Research, v. 167, p. 7192.Google Scholar
Moczydłowska, M., and Willman, S., 2009, Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities: Precambrian Research, v. 173, p. 2738.Google Scholar
Morton, J.G.G., 1997, Lithology and environments of deposition, in Morton, J.G.G., and Drexel, J.F., eds., The Petroleum Geology of South Australia. Volume 3: Officer Basin. South Australia: Department of Mines and Energy Resources, Report Book, 97/19. p. 4786.Google Scholar
Nagovitsin, K., 2009, Tappania-bearing association of the Siberian platform: biodiversity, stratigraphic position and geochronological constraints: Precambrian Research, v. 173, p. 137145.Google Scholar
Nagy, R.M., Porter, S.M., Dehler, C.M., and Shen, Y., 2009, Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation: Nature Geoscience, v. 2, p. 415418.Google Scholar
Naumova, S.N., 1949, Spory nizhnego Kembriia [Spores of the lower Cambrian]: Izvestiia Akademii Nauka, Seriia Geologicheskaia, v. 4, p. 4956 [in Russian].Google Scholar
Pang, K., Tang, Q., Schiffbauer, J.D., Yao, J., Yuan, X., Wan, B., Chen, L., Ou, Z., and Xiao, S., 2013, The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils: Geobiology, v. 11, p. 499510.Google Scholar
Parfrey, L.W., Lahr, D.J.G., Knoll, A.H., and Katz, L.A., 2011, Estimating the timing of early eukaryotic diversification with multigene molecular clocks: Proceedings of the National Academy of Sciences, v. 108, p. 1362413629.Google Scholar
Peat, C.J., Muir, M.D., Plumb, K.A., McKirdy, D.M., and Norvick, M.S., 1978, Proterozoic microfossils from the Roper Group, Northern Territory, Australia: BMR Journal of Australian Geology and Geophysics, v. 3, p. 117.Google Scholar
Peng, Y., Bao, H., and Yuan, X., 2009, New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China: Precambrian Research, v. 168, p. 223232.Google Scholar
Pierrehumbert, R.T., Abbot, D.S., Voigt, A., and Koll, D., 2011, Climate of the Neoproterozoic: Annual Review of Earth and Planetary Sciences, v. 39, p. 417460.Google Scholar
Pisarevsky, S.A., Li, Z.X., Grey, K., and Stevens, M.K., 2001, A paleomagnetic study of Empress 1A, a stratigraphic drillhole in the Officer Basin: evidence for a low-latitude position of Australia in the Neoproterozoic: Precambrian Research, v. 110, p. 93108.Google Scholar
Pisarevsky, S.A., Wingate, M.T.D., Stevens, M.K., and Haines, P.W., 2007, Palaeomagnetic results from the Lancer 1 stratigraphic drillhole, Officer Basin, Western Australia, and implications for Rodinia reconstructions: Australian Journal of Earth Sciences, v. 54, p. 561572.Google Scholar
Porter, S.M., and Knoll, A.H., 2000, Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon: Paleobiology, v. 26, p. 360385.Google Scholar
Porter, S.M., and Riedman, L.A., 2016, Systematics of organic-walled microfossils from the mid-Neoproterozoic Chuar Group, Grand Canyon, Arizona: Journal of Paleontology, v. 90, p. 815853.Google Scholar
Porter, S.M., Meisterfeld, R., and Knoll, A.H., 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae: Journal of Paleontology, v. 77, p. 409429.Google Scholar
Prasad, B., Uniyal, S.N., and Asher, R., 2005, Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India: The Palaeobotanist, v. 54, p. 1360.Google Scholar
Pyatiletov, G., 1980, O nakhodkakh mikrofossilii roda Navifusa v Lakhandinskoi Svite [On finds of microfossils of the genus Navifusa in the Lakhanda Suite]: Palaeontological Journal, v. 3, p. 143145 [in Russian].Google Scholar
Rainbird, R. H., Stern, R. A., Khudoley, A. K., Kropachev, A. P., Heaman, L. M., and Sukhorukov, V. I., 1998, U-Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia-Siberia connection: Earth and Planetary Science Letters, v. 164, p. 409420.Google Scholar
Reitlinger, E.A., 1948, Kembriiskie foraminifery Iakutii [Cambrian foraminifera of Yakutia]: Biulleten Moskovskogo Obshchestva Ispytalelej Prirody: Otdlenie Geologii [Bulletin of Moscow Nature Investigators Society, Geological Section], v. 23, p. 7781 [in Russian].Google Scholar
Reitlinger, E.A., 1959, Atlas mikroskopicheskikh organicheskikh ostatkov i problematiki drevnikh tolshch Sibiri [Atlas of miscroscopic organic matter and problems of the ancient strata of Siberia]. Trudy Geologicheskogo Instituta. Akademiia Nauka SSSR, Moscow. 63 p., 22 plates [in Russian].Google Scholar
Riedman, L.A., Porter, S.M, Halverson, G.P., Hurtgen, M.T., and Junium, C.K., 2014, Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard: Geology, v. 42, p. 10111014.Google Scholar
Rothman, D.H., Hayes, J.M., and Summons, R.E., 2003, Dynamics of the Neoproterozoic carbon cycle: Proceedings of the National Academy of Sciences, USA, v. 100, p. 81248129.Google Scholar
Samuelsson, J., 1997, Biostratigraphy and palaeobiology of early Neoproterozoic strata of the Kola Peninsula, northwest Russia: Norsk Geologisk Tidsskrift, v. 77, p. 165192.Google Scholar
Samuelsson, J., and Butterfield, N.J., 2001, Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications: Precambrian Research, v. 107, p. 235251.Google Scholar
Samuelsson, J., Dawes, P.R., and Vidal, G., 1999, Organic-walled microfossils from the Proterozoic Thule Supergroup, northwest Greenland: Precambrian Research, v. 96, p. 123.Google Scholar
Schiffbauer, J.D., and Xiao, S., 2009, Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: a new view of complexity in early eukaryotic organisms: Palaios, v. 24, p. 616626.Google Scholar
Schopf, J.W., 1968, Microflora of the Bitter Springs Formation, late Precambrian, central Australia: Journal of Paleontology, v. 42, p. 651688.Google Scholar
Schopf, J.W., 1992, Atlas of representative Proterozoic microfossils, in Schopf, J.W., ed., The Proterozoic Biosphere. Cambridge, Cambridge University Press, p. 10551117.Google Scholar
Sergeev, V.N., and Schopf, J.W., 2010, Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of south Kazakhstan: the marine biosphere on the eve of the metazoan radiation: Journal of Paleontology, v. 84, p. 363401.Google Scholar
Simonetti, C., and Fairchild, T.R., 2000, Proterozoic microfossils from subsurface siliciclastic rocks of the São Francisco Craton, south-central Brazil: Precambrian Research, v. 103, p. 129.Google Scholar
Singh, V.K., and Babu, R., 2013, Neoproterozoic chert permineralized silicified microbiota from the carbonate facies of Raipur Group, Chhattisgarh Basin, India: their biostratigraphic significance: Geological Society of India Special Publication, v. 1, p. 115.Google Scholar
Staplin, F.L., Jansonius, J., and Pocock, S.A.J., 1965, Evaluation of some acritarchous hystrichosphere genera: Neues Jarbuch für Geologie und Paläontologie Abhandlungen, v. 123, p. 167201.Google Scholar
Strother, P.K, Battison, L., Brasier, M.D., and Wellman, C.H., 2011, Earth’s earliest non-marine eukaryotes: Nature, v. 473, p. 505509.Google Scholar
Su, W., Li, H., Xu, L., Jia, S., Geng, J., Zhou, H., Wang, Z., and Pu, H., 2012, Luoyu and Ruyang Group at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System: direct constraints from LA-MC-ICPMS U-Pb age on the tuffite in the Luoyukou Formation, Ruzhou, Henan, China: Geological Survey and Research, v. 35, p. 96108.Google Scholar
Swanson-Hysell, N., Rose, C.V., Calmet, C.C., Halverson, G.P., Hurtgen, M.T., and Maloof, A.C., 2010, Cryogenian glaciations and the onset of carbon-isotope decoupling: Science, v. 328, p. 608611.Google Scholar
Talyzina, N.M., and Moczydłowska, M., 2000, Morphological and ultrastructural studies of some acritarchs for the lower Cambrian Lükati Formation, Estonia: Review of Palaeobotany and Palynology, v. 112, p. 121.Google Scholar
Tang, Q., Pang, K., Xiao, S., Yuan, X., Ou, Z., and Wan., B., 2013, Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance: Precambrian Research, v. 236, p. 157181.Google Scholar
Timofeev, B.V., 1959, Drevneishaia flora Pribaltiki i ee stratigraficheskoe znachenie [Ancient flora of the Baltic states and its stratigraphic value]: Vseoyuznyi Neftyanoi Naucho-Issledovatelskii Geologorazvedochnyi Institut, Leningrad Trudy VNIGRI, v. 129, p. 1136, pl. 1–24 [in Russian].Google Scholar
Timofeev, B.V., 1966, Mikropaleofitologicheskoe Issledovanie Drevnikh Svit [Micropaleophytological study of Ancient Suite]: Moscow, Nauka, 147 p., 89 plates [in Russian].Google Scholar
Timofeev, B.V., 1969, Sferomorfidy Proterozoia [Proterozoic Sphaeromorphida]: Leningrad, Akademiia Nauk SSSR, 146 p. [in Russian].Google Scholar
Timofeev, B.V., and Hermann, T.N., 1979, Dokembriiskaia mikrobiota Lakhandinskoi svity [Precambrian microbiota of the Lakhanda Suite], in Sokolov, B.S., ed., Paleontologiia Dokembriia i Rannego Kembriia [Precambrian and Early Cambrian Paleontology]: Leningrad, Nauka, p. 137147 [in Russian].Google Scholar
Timofeev, B.V., Hermann, T.N., and Mikhailova, N.S., 1976, Mikrofitofossilii Dokembriia, Kembriia i Ordovika [Microphytofossils of the Precambrian, Cambrian and Ordovician]: Leningrad, Akademiia Nauk SSSR, 107 p. [in Russian].Google Scholar
Tynni, R., and Uutela, A., 1984, Microfossils from the Precambrian Muhos Formation in western Finland: Geological Survey of Finland Bulletin, v. 330, 38 p., 20 pl.Google Scholar
Valensi, L., 1949, Sur quelques microorganisms planctoniques des silex du Jurassique moyen du Poitou et de Normandie: Bulletin de la Société géologique de France, série 5, v. 18, p. 537550 [in French].Google Scholar
Veis, A.F, Petrov, P.U., and Vorob’eva, N.G., 1998, Miroedikhinskaia mikrobiota Verkhnego Rifeia Sibiri. Soobshchenie 1. Sostav i fatsial’no-ekologicheskoe raspredelenie organostennykh mikrofossilii [Miroyedikha microbiota of the upper Riphean, Siberia. Report 1. Compositions and facies-ecological distribution of organic-microfossils]: Stratigrafiya, Geologicheskaya Korreliatsiya, v. 6(5), p. 1537 [in Russian].Google Scholar
Vidal, G., 1976, Late Precambrian microfossils from the Visingsö beds in southern Sweden: Fossils and Strata, v. no. 9, 37 p.Google Scholar
Vidal, G., 1979, Acritarchs form the upper Proterozoic and lower Cambrian of East Greenland: Grønlands Geologiske Undersøgelse Bulletin, v. 134, 40 p., 7 pl.Google Scholar
Vidal, G., 1981, Micropalaeontology and biostratigraphy of the upper Proterozoic and lower Cambrian sequence in East Finnmark, northern Norway: Norges Geologiske Undersøkelse Bulletin, v. 362, p. 153.Google Scholar
Vidal, G., and Ford, T.D., 1985, Microbiotas from the Late Proterozoic Chuar Group (Northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications: Precambrian Research, v. 28, p. 349389.Google Scholar
Vidal, G., and Siedlecka, A., 1983, Planktonic, acid-resistant microfossils from the upper Proterozoic strata of the Barents Sea Region of Varanger Peninsula, East Finnmark, Northern Norway: Norges Geologiske Undersøkelse Bulletin, v. 382, p. 4579.Google Scholar
Vorob’eva, N.G., Sergeev, V.N., and Knoll, A.H., 2009, Neoproterozoic microfossils from the northeastern margin of the East European Platform: Journal of Paleontology, v. 83, p. 161196.Google Scholar
Walter, M.R., Veevers, J.J., Calver, C.R., and Grey, K., 1995, Neoproterozoic stratigraphy of the Centralian Superbasin: Precambrian Research, v. 73, p. 173195.Google Scholar
Willman, S., 2009, Morphology and wall ultrastructure of leiosphaeric and acanthomorphic acritarchs from the Ediacaran of Australia: Geobiology, v. 7, p. 820.Google Scholar
Willman, S., and Moczydłowska, M., 2008, Ediacaran acritarch biota form the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation: Precambrian Research, v. 162, p. 498530.Google Scholar
Xiao, S., and Knoll, A.H., 1999, Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China: Lethaia, v. 32, p. 219240.Google Scholar
Xiao, S., Knoll, A.H., Kaufman, A.J., Yin, L., and Zhang, Y., 1997, Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform: Precambrian Research, v. 84, p. 197220.Google Scholar
Xiao, S., Yuan, X., Steiner, M., and Knoll, A.H., 2002, Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China: Journal of Paleontology, v. 76, p. 347376.Google Scholar
Yakshchin, M.S., and Luchinina, V.A., 1981, Novye Dannye po iskopaemym vodorosliam semeistva Oscillatoriaceae (Kirchn.) Elenkin [New data on fossil algae in Family Oscilliatoriacea (Kirchn.) Elenkin], in Meshkova, N.P., and Nikolaeva, E.B., eds., Pogranichnye otlozhenyia Dokembryia i Kembryia Cibirskoi platformi (biostratigrafiya, paleontologia, usloviya obrazovaniya) [Border Precambrian and Cambrian deposits of the Siberian platform (biostratigraphy, paleontology and conditions of formation)], Novosibirsk, Nauka, p. 2834 [in Russian].Google Scholar
Yan, Y.-Z., and Liu, Z.-L., 1993, Significance of eucaryotic organisms in the microfossil flora of Changcheng System: Acta Micropalaeontologica Sinica, v. 10, p. 167180 [in Chinese with English abstract].Google Scholar
Yan, Y.-Z., and Zhu, S.-X., 1992, Discovery of acanthomorphic acritarchs form the Baicaoping Formation in Yongjia, Shanxi and its geological significance: Acta Micropaleontologica Sinica, v. 9, p. 267282.Google Scholar
Yin, L.-M., 1997, Acanthomorohic acritarchs form the Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China: Review of Palaeobotany and Palynology, v. 98, p. 1525.Google Scholar
Yin, L.-M., and Sun, W.-G., 1994, Microbiota from the Neoproterozoic Liulaobei Formation in the Huainan region, northern Anhui, China: Precambrian Research, v. 65, p. 95114.Google Scholar
Yuan, X., and Hofmann, H.J., 1998, New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Wengan, Guizhou Province, southwestern China: Alcheringa, v. 22, p. 189222.Google Scholar
Zang, W.-L., 1995, Early Neoproterozoic sequence stratigraphy and acritarch biostratigraphy, eastern Officer Basin, South Australia: Precambrian Research, v. 74, p. 119175.Google Scholar
Zang, W.-L., and McKirdy, D.M., 1994, Microfossils and molecular fossils from the Neoproterozoic Alinya Formation—a possible new source rock in the eastern Officer Basin: PESA Journal, v. 22, p. 8990.Google Scholar
Zang, W.-L., and Walter, M.R., 1992, Late Proterozoic and early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, central-eastern China: Precambrian Research, v. 57, p. 243323.Google Scholar
Zimmer, A., Lang, D., Richardt, S., Frank, W., Reski, R., and Rensing, S., 2007, Dating the early evolution of plants: detection and molecular clock analyses of orthologs: Molecular Genetics and Genomics, v. 278, p. 393402.Google Scholar