Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T06:00:24.090Z Has data issue: false hasContentIssue false

A new anthracothere (Artiodactyla) from the early Oligocene, Fayum, Egypt, and the mystery of African ‘Rhagatherium’ solved

Published online by Cambridge University Press:  15 June 2016

Afifi H. Sileem
Affiliation:
Vertebrate Paleontology Section, Cairo Geological Museum, Cairo, Egypt 〈[email protected]
Hesham M. Sallam
Affiliation:
Mansoura University Vertebrate Paleontology Center, Department of Geology, Mansoura University, Mansoura, 35516, Egypt 〈[email protected]
Abdel Galil A. Hewaidy
Affiliation:
Department of Geology, Faculty of Science, Al-Azhar University, Egypt 〈[email protected]
Ellen R. Miller
Affiliation:
Department of Anthropology, Wake Forest University, Winston-Salem, North Carolina 27106, USA 〈[email protected]
Gregg F. Gunnell
Affiliation:
Division of Fossil Primates, Duke Lemur Center, Durham, North Carolina 27705, USA 〈[email protected]

Abstract

Recent work on new anthracothere (Mammalia, Artiodactyla) specimens from the Jebel Qatrani Formation, early Oligocene, Fayum, Egypt, has revealed the presence of a new genus. Nabotherium new genus is described on the basis of a partial skull, several mandibular and maxillary specimens, and isolated teeth. The new genus exhibits a distinctive combination of features not seen in other Paleogene anthracotheres. The most noticeable characteristics of the new genus include the presence of large and well-developed upper and lower canines, caniniform third incisors, the presence of only a short diastema between the canine and first premolar, and broad, bunodont cheek teeth. This is in contrast to other contemporary anthracotheres, including other forms from the Fayum, which show a spatulate third incisor, a reduced canine, a much longer canine-premolar diastema, and more narrow, bunoselenodont cheek teeth. The presence of a relatively short rostrum with closely packed incisors, low-crowned and simple premolars, and low-crowned, bunodont molars indicates that members of the new genus would have been more efficient at crushing foods than slicing vegetation, and suggests a more varied herbivorous and frugivorous diet than was favored by other, more bunoselenodont Fayum anthracotheres.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, C.W., 1906, A descriptive catalogue of the Tertiary Vertebrata of the Fayum, Egypt. Based on the collection of the Egyptian government in the Geological Museum, Cairo, and on the collection in the British Museum (Natural History), London: London, British Museum of Natural History, 324 p.Google Scholar
Colbert, E.H., 1938, Fossil Mammals from Burma in the American Museum of Natural History: Bulletin of the American Museum of Natural History, v. 74, p. 255436.Google Scholar
Cuvier, G., 1822, Recherches sur les Ossemens Fossils, où l’on Rètabit les Caractères de Plusieurs Animax don’t les Revolutions du Globe ont Détruit les Espèces: Paris, Dufour et E. d’Ocagne, 412 p.Google Scholar
Domning, D.P., and Gingerich, P.D., 1994, Protosiren smithae, new species (Mammalia, Sirenia), from the late middle Eocene of Wadi Hitan, Egypt: Contributions from the Museum of Paleontology, University of Michigan, v. 29, p. 6987.Google Scholar
Domning, D.P., Gingerich, P.D, Simons, E.L., and Ankel-Simons, F.A., 1994, A new early Oligocene dugongid (Mammalia, Sirenia) from Fayum Province, Egypt: Contributions from the Museum of Paleontology, University of Michigan, v. 29, p. 89108.Google Scholar
Ducrocq, S., 1997, The anthracotheriid genus Bothriogenys (Mammalia, Artiodactyla) in Africa and Asia during the Paleogene: Phylogenetical and paleobiogeographical relationships: Stuttgarter Beitrage zur Naturkunde, B (Geologie und Palaontologie), v. 250, p. 144.Google Scholar
Erfurt, J., and Sudre, J., 1995, Un Haplobunodontidae nouveau, Hallebune krumbiegeli nov. gen. nov. sp. (Artiodactyla, Mammalia), dans l’Eocene moyen du Geiseltal pres halle (Sachsen-Anhalt, Allemagne): Palaeovertebrata, v. 24, p. 8499.Google Scholar
Gingerich, P.D., Smith, B.H., and Simons, E.L., 1990, Hind limbs of Eocene Basilosaurus isis: Evidence of feet in whales: Science, v. 249, p. 154157.Google Scholar
Holroyd, P., Lihoreau, P., Gunnell, G.F., and Miller, E.R., 2010, Anthracotheriidae, in Werdelin, L., and Sanders, W.J., eds., Cenozoic Mammals of Africa: Berkeley, University of California Press, p. 843851.Google Scholar
Hooker, J.J., and Thomas, K.M., 2001, A new species of Amphirhagatherium (Choeropotamidae, Artiodactyla, Mammalia) from the late Eocene Headon Hill Formation of southern England and phylogeny of endemic European ‘anthracotherioids’: Palaeontology, v. 44, p. 827853.Google Scholar
Khin, Zaw, Meffre, S., Takai, M., Suzuki, H., Burrett, C., Thaung, Htike, Zin, Maung, Maung, Thein, Tsubamoto, T., Egi, N., and Maung, Maung, 2014, The oldest anthropoid primates in SE Asia: Evidence from LA-ICP-MSU-Pb zircon age in the late middle Eocene Pondaung Formation, Myanmar: Gondwana Research, v. 26, p. 122131.Google Scholar
Kowalevsky, W., 1874, Monographie der Gattung Anthracotherium: Palaeontographica, v. 22, p. 131290.Google Scholar
Leidy, J., 1869, The extinct mammalian fauna of Dakota and Nebraska, including an account of some allied forms from other localities, together with a synopsis of the mammalian remain of North America: Journal of the Academy of Natural Sciences, Philadelphia, ser. 2, v. 7, p. 1472.Google Scholar
Lihoreau, F., and Ducrocq, S., 2007, Family Anthracotheriidae, in Prothero, D.R., and Foss, S.E., eds., The Evolution of Artiodactyls, Baltimore, Maryland, The Johns Hopkins University Press, p. 89105.Google Scholar
Lihoreau, F., Boisserie, J.R., Manthi, F.K., and Ducrocq, S., 2015, Hippos stem from the longest sequence of terrestrial cetartiodactyl evolution in Africa: Nature Communications, v. 6, p. 6264, doi:10.1038/ncomms7264.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna tria Naturae, secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentis, Synonymis, Locis, 10th ed., Stockholm, Sweden, Laurentii, Slavi, 824 p.Google Scholar
Macdonald, J.R., 1956, The North American anthracotheres: Journal of Paleontology, v. 30, p. 615645.Google Scholar
McKenna, M.C., and Bell, S.J., 1997, Classification of Mammals Above the Species Level: New York, Columbia University Press, 631 p.Google Scholar
Murray, A.M., Cook, T.D., Attia, Y.S., Chatrath, P., and Simons, E.L., 2010, A freshwater ichthyofauna from the late Eocene Birket Qarun Formation, Fayum, Egypt: Journal of Vertebrate Paleontology, v. 30, p. 665680.Google Scholar
Owen, R., 1848, Description of teeth and portions of two of two extinct anthracotheroid quadrapeds (Hyopotamus vectianus and H. bovinus) discovered by the Marchioness of Hastings in the Eocene deposits on the N.W. coast of the Isle of Wight, with an attempt to develop Cuvier’s idea of the classification of pachyderms by the number of their toes: Quarterly Journal of the Geological Society of London, v. 4, p. 104141.Google Scholar
Pickford, M., 2008, Libycosaurus petrocchii Bonarelli, 1947, and Libycosaurus anisae (Black, 1972) (Anthracotheriidae, Mammalia): Nomenclatural and geochronological implications: Annales de Paléontologie, v. 94, p. 3955.Google Scholar
Pictet, F.J., 1855–1857, Mémoire sur les Animaux Vertébrés Trouvés dans le Terrain Sidérolitique du Canton de Vaud et Appartenant a la Faune Éocene, Seconde Partie, Description des Ossements Fossiles: Geneva, Switzerland, J. Kessman, Libraire, p. 27120.Google Scholar
Pictet, F.J., 1857, Seconde Partie. Description des ossements fossiles trouvés au Mauremont, in Pictet, F.-J., Gaudin, C., and De La Harpe, P. 1855–1857, Mémoire sur les Animaux Vertébrés Trouvés dans le Terrain Sidérolithique du Canton de Vaud et Appartenant à la Faune Éocène, Volume 2, Matériaux de Paléontologie Suisse (note 1), Geneva, Switzerland, J. Kessmann, p. 27120.Google Scholar
Pilgrim, G.E., 1928, The Artiodactyla of the Eocene of Burma: Palaeontologia Indica, v. 13, p. 139.Google Scholar
Pilgrim, G.E., 1941, The dispersal of the Artiodactyla: Biological Reviews, v. 16, p. 134163.Google Scholar
Pilgrim, G.E., and Cotter, G.D., 1916, Some newly discovered Eocene mammals from Burma: Records of the Geological Survey of India, v. 47, p. 4277.Google Scholar
Rasmussen, D.T., and Simons, E.L., 1988, New Oligocene hyracoids from Egypt: Journal of Vertebrate Paleontology, v. 8, p. 6783.Google Scholar
Sallam, H.M., Seiffert, E.R., Steiper, M.E., and Simons, E.L., 2009, Fossil and molecular evidence constrain scenarios for the early evolutionary and biogeographic history of hystricognathous rodents: Proceedings of the National Academy of Sciences, v. 106, p. 1672216727.Google Scholar
Sallam, H.M., Seiffert, E.R., and Simons, E.L., 2011, Craniodental morphology and systematics of a new family of hystricognathous rodents (Gaudeamuridae) from the late Eocene and early Oligocene of Egypt: PLoS ONE, v. 6, e16525.Google Scholar
Schmidt, M., 1913, Ueber Paarhufer der fluviomarinen Schichted des Fajum: Geologische und Paläontologische Abhandlungen, v. 15, p. 153264.Google Scholar
Seiffert, E.R., 2006, Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman: Proceedings of the National Academy of Sciences, v. 103, p. 50005005.Google Scholar
Seiffert, E.R., 2007, A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence: BMC Evolutionary Biology, v. 7, p. 224, doi:10.1186/1471-2148-7-224.Google Scholar
Seiffert, E.R., 2010, The oldest and youngest records of afrosoricid placentals from the Fayum Depression of northern Egypt: Acta Palaeontologica Polonica, v. 55, p. 599610.Google Scholar
Seiffert, E.R., 2012, Early primate evolution in Afro-Arabia: Evolutionary Anthropology, v. 21, p. 239253.Google Scholar
Seiffert, E.R., Simons, E.L., and Attia, Y., 2003, Fossil evidence for an ancient divergence of lorises and galagos: Nature, v. 422, p. 421424.Google Scholar
Seiffert, E.R., Perry, J.M.G., Simons, E.L., and Boyer, D.M., 2009, Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates: Nature, v. 461, p. 11181121.Google Scholar
Simons, E.L., and Rasmussen, D.T., 1990, Vertebrate paleontology of Fayum: History of research, faunal review and future prospects, in Said, R., ed., The Geology of Egypt: Rotterdam, The Netherlands, A. A. Balkema, p. 627638.Google Scholar
Simons, E.L., Seiffert, E.R., Ryan, T.M., and Attia, Y., 2007, A remarkable female cranium of the early Oligocene anthropoid Aegyptopithecus zeuxis (Catarrhini, Propliopithecidae): Proceedings of the National Academy of Sciences, v. 104, p. 87318736.CrossRefGoogle ScholarPubMed
Stehlin, H.G., 1908, Die Säugethiere des Schweizerischen Eocaens. Critischer Catalog der Materialien. 5. ChoeropotamusCebochoerusChoeromorusHaplobunodonRhagatheriumMixotherium: Abhandlungen Schweizerischen Paläontologischen Gesellschaft, v. 35, p. 691837.Google Scholar
Suteethorn, V., Buffetaut, E., Helmcke-Ingavat, R., Jaeger, J.J., and Jongkanjanasoontorn, Y., 1988, Oldest known Tertiary mammals from Southeast Asia: Middle Eocene primate and anthracotheres from Thailand: Neues Jahrbuch für Geologie und Paläontologie Monatshefte, v. 9, p. 563570.Google Scholar
Tsubamoto, T., Zin-Maung-Maung-Thein, , Egi, N., Nishimura, T., Thaung-Htike, , and Takai, M., 2011, A new anthracotheriid artiodactyl from the Eocene Pondaung Formation of Myanmar: Vertebrat Palasiatica, v. 49, p. 85113.Google Scholar