Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T23:26:51.077Z Has data issue: false hasContentIssue false

Latest Devonian–Earliest Mississippian nearshore trace-fossil assemblages from West Virginia, Pennsylvania, and Maryland

Published online by Cambridge University Press:  14 July 2015

Thomas W. Bjerstedt*
Affiliation:
Department of Geology and Geography, West Virginia University, Morgantown 26506

Abstract

Trace fossils are used in deposystem analysis of Late Devonian–Early Mississippian nearshore facies in the north-central Appalachian Basin. These nearshore facies resulted from separate transgressions during latest Devonian (Cleveland Shale) and earliest Mississippian (Sunbury Shale) time. Emphasis is placed on a well-exposed section at Rowlesburg, West Virginia, where the Oswayo, Cussewago Sandstone, and Riddlesburg Shale Members of the Price Formation are exposed.

The Oswayo Member at Rowlesburg preserves an offshore-to-lower shoreface transition in a complex of euryhaline, protected-bay, lagoon, and possible estuarine facies. Cruziana is common and occurs along with Arthrophycus, Bifungites, Chondrites, Planolites, Palaeophycus, Rhizocorallium, Rosselia, Rusophycus, and Skolithos in intensely bioturbated mudstone, siltstone, and sandstone. These lithologies were deposited below fair-weather wave base and grade upsection to upper shoreface facies comprised of thick, horizontally-laminated sandstones with thinner, burrowed mudstone interbeds. Upper shoreface traces consist of Arenicolites, Cruziana, Diplocraterion, Dimorphichnus, Planolites, Thalassinoides, and Skolithos. Skolithos “pipe rock” sandstones occur at the toe of upper shoreface facies. Eastward the Oswayo Member grades into a restricted-bay facies and finally into beach and tidal flat facies near its stratigraphic wedge-out in eastern West Virginia and western Maryland. The Cussewago Sandstone Member at Rowlesburg overlies the Oswayo and is bounded at the top by a disconformity. The Cussewago contains Arenicolites, Isopodichnus, Phycodes, Planolites, and Skolithos in upper shoreface sandstones possibly related to deposition in deltaic or tidal channel systems.

Regionally, the Riddlesburg Shale records a range of euryhaline environments in shallow-shelf, open-bay, and probable estuarine facies. The Riddlesburg Shale Member at Rowlesburg is comprised of dark-grey silty shales, siltstones, and hummocky cross-stratified sandstones. Trace fossils include Bergaueria, Bifungites, Fustiglyphus?, Helminthopsis, Planolites, and Skolithos. Lithofacies of the Riddlesburg Shale in West Virginia were markedly influenced by a syndepositionally active basement feature, the West Virginia Dome. Riddlesburg-age shoreface sandstones deposited on the crest of the Dome contain apparent omission surfaces with common Rhizocorallium and Arenicolites, Cruziana?, Planolites, and Skolithos.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, S. P. 1973. Bergaueria Prantl (Cambrian and Ordovician), a probable actinian trace fossil. Journal of Paleontology, 47:919924.Google Scholar
Alpert, S. P. 1974. Systematic review of the genus Skolithos . Journal of Paleontology, 48:661669 Google Scholar
Bjerstedt, T. W. 1986a. Stratigraphy and deltaic depositional systems of the Price Formation (Upper Devonian-Lower Mississippian) in West Virginia. Unpubl. Ph.D. dissertation, West Virginia University, Morgantown, 730 p.Google Scholar
Bjerstedt, T. W. 1986b. Regional stratigraphy and sedimentology of the Lower Mississippian Rockwell Formation and Purslane Sandstone based on the new Sideling Hill road cut, Maryland. Southeastern Geology, 27:6994.Google Scholar
Bornemann, J. G. 1889. Über den Buntsandstein in Deutschland und seine Bedeutung für die Trias. Beiträge zur Geologie und Paläontologie, 1:161.Google Scholar
Boswell, R. M. 1985. Stratigraphy and sedimentation of the Acadian clastic wedge in northern West Virginia. Unpubl. M.S. thesis, West Virginia University, Morgantown, 179 p.Google Scholar
Bridge, J. S., and Droser, M. L. 1985. Unusual marginal marine lithofacies from the Upper Devonian Catskill clastic wedge, p. 143161. In Woodrow, D. L. and Sevon, M. D. (eds.), The Catskill Delta. Geological Society of America Special Paper 201.CrossRefGoogle Scholar
Bromley, R. G., and Ekdale, A. A. 1986. Composite ichnofabrics and tiering of burrows. Geological Magazine, 123:5965.CrossRefGoogle Scholar
Chamberlain, C. K. 1971. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. Journal of Paleontology, 45:212246.Google Scholar
Chaplin, J. R. 1980. Stratigraphy, trace fossil associations and depositional environments in the Borden Formation (Mississippian), northeastern Kentucky. Kentucky Geological Survey, Annual Field Conference Guidebook, 114 p.Google Scholar
Chaplin, J. R. 1982. Paleoenvironments and biostratigraphy of the Borden and parts of the Newman and Breathitt Formations (Mississippian-Pennsylvanian) in northeastern Kentucky. Society of Economic Paleontologists and Mineralogists, 12th Annual Field Conference, Great Lakes Section, 195 p.Google Scholar
Clifton, H. E. 1982. Estuarine deposits, p. 179189. In Scholle, P. A. and Spearing, D. (eds.), Sandstone Depositional Environments. American Association of Petroleum Geologists Memoir 31.Google Scholar
Conkin, J. E., and Conkin, B. M. 1968. Scalarituba missouriensis and its stratigraphic distribution. University of Kansas Paleontological Contributions, Paper 31, 8 p.Google Scholar
Crimes, T. P. 1969. Trace fossils from the Cambro-Ordovician rocks of north Wales and their stratigraphic significance. Geological Journal, 6:333337.CrossRefGoogle Scholar
Crimes, T. P. 1975. The production and preservation of trilobite resting and furrowing traces. Lethaia, 8:3548.CrossRefGoogle Scholar
Dahmer, G. 1937. Lebensspuren aus dem Taunusquarzit und den Siegener Schichten (Unterdevon). Preussische Geologische Landesanstalt, Jahrbuch, Berlin, 57:523529.Google Scholar
Desio, A. 1940. Vestigia problematiche Paleozoiche della Libia. Museo Libico Storia Naturale, Annali, Tripoli, 2:4792. (Instituto de Geologia, Paleontologia e Geografia Fisica, University di Milano, series P, publication 20, 92 p.)Google Scholar
de Witt, W. Jr. 1951. Stratigraphy of the Berea Sandstone and associated rocks in northeastern Ohio and northwestern Pennsylvania. Geological Society of America Bulletin, 62:13471369.CrossRefGoogle Scholar
Eagar, R. M. C., et al. 1985. Trace fossil assemblages and their occurrence in Silesian (Mid-Carboniferous) deltaic sediments of the central Pennine Basin, England, p. 99149. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists, Special Publication 35.CrossRefGoogle Scholar
Edmunds, W. E., et al. 1979. The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States—Pennsylvania and New York. U.S. Geological Survey, Professional Paper 1110-A-L, p. B1B33.Google Scholar
Ehrenberg, K. 1944. Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleinitz beschriebenen Gangkernen und Bauten dekapoder Krebse. Paláontologische Zeitschrift, 23:354359.CrossRefGoogle Scholar
Ekdale, A. A. 1985. Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology, 50:6381.CrossRefGoogle Scholar
Ekdale, A. A., Bromley, R. G., and Pemberton, S. G. 1984. Ichnology; Trace Fossils in Sedimentology and Stratigraphy. Society of Economic Paleontologists and Mineralogists, Short Course No. 15, 317 p.CrossRefGoogle Scholar
Feldmann, R. M., et al. 1978. Chagrinichnites brooksi, a new trace fossil of arthropod origin. Journal of Paleontology, 52:287294.Google Scholar
Fettke, C. R., and Bayles, R. E. 1945. Conemaugh Gorge section of the Mississippian System southeast of Cramer, Pennsylvania. Proceedings of the Pennsylvania Academy of Science, 19:8695.Google Scholar
Fischer-Ooster, C. von. 1858. Die fossilen Fucoiden der Schweizer Alpen, nebst Erorterungen über deren geologisches Alter. Huber, Bern, Switzerland, 72 p.Google Scholar
Frey, R. W., and Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13:183207.CrossRefGoogle Scholar
Frey, R. W., and Seilacher, A., and Pemberton, S. G. 1984. Trace fossil facies models, p. 189207, In Walker, R. G. (ed.), Facies Models, 2nd ed. Geological Association of Canada.Google Scholar
Fürsich, F. T. 1974. Ichnogenus Rhizocorallium . Paläontologische Zeitschrift, 48:1628.CrossRefGoogle Scholar
Fürsich, F. T., Kennedy, W. J., and Palmer, T. J. 1981. Trace fossils at a regional discontinuity surface: the Austin-Taylor (upper Cretaceous) contact in central Texas. Journal of Paleontology, 55:537551.Google Scholar
Glaessner, M. F. 1957. Paleozoic arthropod trails from Australia. Paläontologische Zeitschrift, 31:103109.CrossRefGoogle Scholar
Glenn, L. C. 1903. Devonic and Carbonic formations of southwestern New York. New York State Museum, Bulletin 69, p. 967989.Google Scholar
Goldring, R., and Langenstrassen, F. 1980. Open shelf and near-shore clastic facies in the Devonian. Palaeontological Association, Special Papers in Paleontology 23, p. 8197.Google Scholar
Gutschick, R. C., and Lamborn, R. 1975. Bifungites, trace fossils from Devonian-Mississippian rocks of Pennsylvania and Montana, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 18:193212.CrossRefGoogle Scholar
Hakes, W. G. 1977. Trace fossils in Late Pennsylvanian cyclothems, Kansas, p. 209226. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal, Special Issue 9, Steel House Press, Liverpool, England.Google Scholar
Hakes, W. G. 1985. Trace fossils from brackish-marine shales, Upper Pennsylvanian of Kansas, U.S.A., p. 2135. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Intepreting Depositional Environments. Society of Economic Paleontologists and Mineralogists, Special Publication 35.CrossRefGoogle Scholar
Haldeman, S. S. 1840. Supplement to number one of “A monograph of the Limniades, and other fresh-water univalve shells of North America”, containing descriptions of apparently new animals in different classes, and the names and characters of the subgenera in Paludina and Anculosa . J. Dobson, Philadelphia, 3 p.Google Scholar
Hall, J. 1847. Paleontology of New York. State of New York, Albany, 1:1338.Google Scholar
Hall, J. 1852. Paleontology of New York. State of New York, Albany, 2:1362.Google Scholar
Hallam, A., and Swett, K. 1966. Trace fossils from the Lower Cambrian pipe rocks of the northwest highlands. Scottish Journal of Geology, 2:101106.CrossRefGoogle Scholar
Hannibal, J. T., and Feldmann, R. M. 1983. Arthropod trace fossils, interpreted as echinocarid escape burrows, from the Chagrin Shale (Late Devonian) of Ohio. Journal of Paleontology, 57:705716.Google Scholar
Häntzschel, W. 1975. Trace fossils, p. W35W122. In Häntzschel, W. (ed.), Trace Fossils and Problematica. Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1, Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Harms, J. C., Southard, J. B., and Walker, R. G. 1982. Stratification and sequence in prograding shoreline deposits, p. 7.17.22. In Structures and Sequences in Clastic Rocks. Society of Economic Paleontologists and Mineralogists, Short Course No. 9.CrossRefGoogle Scholar
Heer, O. 1877. Flora Fossilis Helvetiae. Die vorweltliche Flora der Schweiz. J. Würster and Company, 182 p.Google Scholar
Hitchcock, E. 1858. Ichnology of New England. A report on the sandstone of the Connecticut Valley, especially its footprints. W. White, Boston, 220 p.Google Scholar
Howard, J. D., and Frey, R. W. 1975. Estuaries of the Georgia coast, U.S.A. II. Regional animal-sediment characteristics of Georgia estuaries. Senckenbergiana Maritima, 7:33103.Google Scholar
Howard, J. D., and Frey, R. W. 1984. Characteristic trace fossils in near-shore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Journal of Earth Science, 21:200219.CrossRefGoogle Scholar
Howard, J. D., and Frey, R. W., and Reineck, H. 1981. Depositional facies of high-energy beach-to-offshore sequence: comparison with low-energy sequence. American Association of Petroleum Geologists Bulletin, 65:807830.Google Scholar
Jordan, D. W. 1985. Trace fossils and depositional environments of Upper Devonian black shales, east-central Kentucky, U.S.A., p. 279298. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists, Special Publication 35.CrossRefGoogle Scholar
Kammer, T. W., and Bjerstedt, T. W. 1986. Stratigraphic framework of the Price Formation (Upper Devonian-Lower Mississippian) in West Virginia. Southeastern Geology, 27:1333.Google Scholar
Laird, W. M. 1941. The Upper Devonian and Lower Mississippian of southwestern Pennsylvania. Progress Report 126, Pennsylvania Topographic and Geologic Survey, 23 p.Google Scholar
Laird, W. M. 1942. The stratigraphy of the Upper Devonian and Lower Mississippian of southwestern Pennsylvania. Unpubl. Ph.D. dissertation, University of Cincinnati, Cincinnati, Ohio, 244 p.Google Scholar
Larese, R. E. 1974. Petrology and stratigraphy of the Berea Sandstone in the Gay Fink and Cabin Creek trends. Unpubl. Ph.D. dissertation, West Virginia University, Morgantown, 246 p.Google Scholar
Legg, I. C. 1985. Trace fossils from a Middle Cambrian deltaic sequence, north Spain, p. 151165. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists, Special Publication 35.CrossRefGoogle Scholar
Lesquereux, L. 1876. Species of fossil marine plants from Carboniferous measures. Indiana Geological Survey, Annual Report, 7:134145.Google Scholar
McCarthy, B. 1979. Trace fossils from a Permian shoreface-foreshore environment, eastern Australia. Journal of Paleontology, 53:345366.Google Scholar
McCoy, F. 1850. On some genera and species of Silurian Radiata in the collection of the University of Cambridge. Annals and Magazine of Natural History, series 2, 7:270290.Google Scholar
Middleman, A. A. 1976. Trace fossils of the Logan Formation (Lower Mississippian) in northern Hocking County, Ohio. Unpubl. M.S. thesis, Ohio University, Athens, 132 p.Google Scholar
Miller, M. F. 1979. Paleoenvironmental distribution of trace fossils in the Catskill deltaic complex, New York State. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:117141.CrossRefGoogle Scholar
Miller, M. F. 1984. Distribution of biogenic structures in Paleozoic nonmarine and marine-margin sequences: an actualistic model. Journal of Paleontology, 58:550570.Google Scholar
Miller, M. F. and Johnson, K. G. 1981. Spirophyton in alluvial-tidal facies of the Catskill deltaic complex: possible biological control of ichnofossil distribution. Journal of Paleontology, 55:10161027.Google Scholar
Miller, M. F., and Byers, C. W. 1984. Abundant and diverse early Paleozoic infauna indicated by the stratigraphic record. Geology, 12:4043.2.0.CO;2>CrossRefGoogle Scholar
Miller, M. F. and Knox, L. W. 1985. Biogenic structures and depositional environments of a Lower Pennsylvanian coal-bearing sequence, northern Cumberland Plateau, Tennessee, U.S.A., p. 6797. In Curran, H. A. (ed.), Biogenic Structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists, Special Publication 35.CrossRefGoogle Scholar
Nicholson, H. A. 1873. Contributions to the study of the errant annelides of the older Paleozoic rocks. Geological Magazine, 10:309310.Google Scholar
d'Orbigny, A. 1842. Voyage dans l'Amérique méridionale. Bertrand, Paris and Levrault, Strasbourg. Paléontologie, Vol. 3, Pt. 4, 188 p.Google Scholar
Osgood, R. G. Jr. 1970. Trace fossils from the Cincinnati area. Paleontographica Americana, 6:281444.Google Scholar
Osgood, R. G. Jr., and Szmuc, E. J. 1972. The trace fossil Zoophycos as an indicator of water depth. Bulletins of American Paleontology, 62:122.Google Scholar
Pelletier, B. R. 1958. Pocono paleocurrents in Pennsylvania and Maryland. Geological Society of America Bulletin, 69:10331064.CrossRefGoogle Scholar
Pemberton, S. G., and Frey, R. W. 1982. Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Journal of Paleontology, 56:843881.Google Scholar
Pemberton, S. G., and Frey, R. W. 1984. Quantitative methods in ichnology: spatial distribution among populations. Lethaia, 17:3349.CrossRefGoogle Scholar
Pepper, J. F., de Witt, W. Jr., and Demarest, D. F. 1954. Geology of the Bedford Shale and Berea Sandstone in the Appalachian Basin. U.S. Geological Survey Professional Paper 259, 109 p.CrossRefGoogle Scholar
Prantl, F. 1946. Two new problematic trails from the Ordovician of Bohemia. Academie Tchèque des Sciences, Bulletin International, Classe des Sciences Mathematiques Naturelles et de la Médicine, Prague, 46:4959.Google Scholar
Reger, D. B. 1927. Pocono stratigraphy in the Broadtop Basin of Pennsylvania. Geological Society of America Bulletin, 38:397410.CrossRefGoogle Scholar
Richter, R. 1850. Aus der thüringischen Grauwacke. Deutsche Geologische Gesellschaft, Zeitschrift, Berlin, 2:198206.Google Scholar
Rodriguez, A., and Gutschick, R. C. 1967. Brachiopods from the Sappington Formation (Devonian-Mississippian) of western Montana. Journal of Paleontology, 41:364384.Google Scholar
Salter, J. W. 1857. On annelide-burrows and surface markings from the Cambrian rocks of the Longmynd. Geological Society of London, Quarterly Journal, 13:199206.CrossRefGoogle Scholar
Schramm, F. R., Feldmann, R. M., and Copeland, M. J. 1978. The Late Devonian Palaeo-palaemonidae and the earliest decapod crustaceans. Journal of Paleontology, 52:13751387.Google Scholar
Seilacher, A. 1953. Studien zur Palichnologie. I. Über die Methoden der Palichnologie. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 96:421452.Google Scholar
Seilacher, A. 1955. Spuren und Fazies im Unterkambrium, p. 11143. In Schindewolf, O. H. and Seilacher, A. (eds.), Beitrage zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akademie der Wissenschaften und der Literatur zu Mainz, mathematisch-naturwissenschaftliche Klasse, Abhandlungen, Wiesbaden, no. 10.Google Scholar
Seilacher, A. 1970. Cruziana stratigraphy of non-fossiliferous Paleozoic sandstones, p. 447476. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Liverpool Geological Society Symposium, Steel House Press, Liverpool, England.Google Scholar
Seilacher, A. 1978. Use of trace fossil assemblages for recognizing depositional environments, p. 167181. In Basan, P. B. (ed.), Trace Fossil Concepts. Society of Economic Paleontologists and Mineralogists, Short Course No. 5.Google Scholar
Sternberg, K. M. G. von. 1833. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt. Fr. Fleischer, Leipzig, Prague, Vol. 1, Pt. 5–6, p. 180.Google Scholar
Stukel, D. J. 1986. Ichnology and environmental analysis of the Chagrin Shale (Famennian), northeast Ohio. Geological Society of America, Abstracts with Programs, 18(4):326.Google Scholar
Swartz, F. M. 1965. Guide to the Horse Shoe Curve section between Altoona and Gallitzin, central Pennsylvania. Pennsylvania Topographic and Geologic Survey, General Geology Report G50, 56 p.Google Scholar
Swett, K., Klein, G. E., and Smitt, D. E. 1971. Cambrian tidal sand body—the Eriboll Sandstone of northwest Scotland, an ancient-Recent analogue. Journal of Geology, 79:400415.CrossRefGoogle Scholar
Szmuc, E. J. 1970. The Devonian system, p. 921. In Banks, P. O. and Feldmann, R. M. (eds.), Guide to the Geology of Northeastern Ohio. Northern Ohio Geological Society.Google Scholar
Szmuc, E. J., Osgood, R. G. Jr., and Meinke, D. W. 1976. Lingulichnites, a new trace fossil genus for lingulid brachiopod burrows. Lethaia, 9:163167.CrossRefGoogle Scholar
Torell, O. M. 1870. Petrificata Suecana Formationis Cambricae. Lunds Universitet, Arsskrift, Vol. 6, Pt. 2, no. 8, p. 114.Google Scholar
Trewin, N. H. 1976. Isopodichnus in a trace fossil assemblage from the Old Red Sandstone. Lethaia, 9:2937.CrossRefGoogle Scholar
Vyalov, O. S. 1971. Redkie problematiki iz mesozoya Pamira i Kavkaza. Paleontologicheskiy Sbornik, Vsesoyuznyy Nauchno Issledovatel'skiy Geologo-Razvedochnyi Neftianoi Institut, Moscow, no. 7, p. 8593.Google Scholar
Weidner, W. E., and Feldmann, R. M. 1985. Paleoecologic interpretation of echniocarid arthropod assemblages in the Late Devonian (Famennian) Chagrin Shale, northeastern Ohio. Journal of Paleontology, 59:9861004.Google Scholar
Weller, S. 1899. Kinderhook faunal studies, I. The fauna of the vermicular sandstone at North-view, Webster County, Missouri. St. Louis Academy of Science Transactions, 9:951.Google Scholar
White, I. C. 1881. Geology of Erie and Crawford Counties. Pennsylvania Geological Survey, Report Q4, 406 p.Google Scholar
Zenker, J. C. 1836. Historisch-topographisches Taschenbuch von Jena und seiner Umgebung besonders in seiner naturwissenschaftlicher und medicinischer Beziehung. In Zenker, J. C. (ed.), Jenaische Zeitschrift für Naturwissenschaft, Wackenhoder, 338 p.Google Scholar