Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T02:45:09.713Z Has data issue: false hasContentIssue false

First report of the early Eocene pteropods from the Zhepure Formation in Yadong, southern Tibet, China

Published online by Cambridge University Press:  08 May 2020

Xin-fa Li
Affiliation:
State Key Laboratory of Environmental Geology and Biogeology, China University of Geosciences, Beijing, 100083, China , , , School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
Guo-biao Li*
Affiliation:
State Key Laboratory of Environmental Geology and Biogeology, China University of Geosciences, Beijing, 100083, China , , , School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
Christopher L. Garvie
Affiliation:
Non-Vertebrate Paleontology Laboratory, Texas Natural Science Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas78758, USA
Tian-yang Wang
Affiliation:
State Key Laboratory of Environmental Geology and Biogeology, China University of Geosciences, Beijing, 100083, China , , , School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
Jun Zhao
Affiliation:
State Key Laboratory of Environmental Geology and Biogeology, China University of Geosciences, Beijing, 100083, China , , , School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
*
*Corresponding author.

Abstract

During recent stratigraphical and micropaleontological investigations of the Gulupu section in Tüna, Yadong, of the Eocene Zhepure Formation, numerous holoplanktonic mollusks (pteropods) were recovered. Four species, assignable to two genera of pteropods (including Limacina yadongensis new species) were systematically described and illustrated, and a gastropod-bivalve biofacies was identified. This is the first report of Eocene (Ypresian) pteropods in southern Tibet; the same stratum also yields many other neritic faunas. The data presented in this study suggest that a semi-closed restricted gulf in the Tüna area existed and the occurrence of pteropods in Tüna may indicate transport from more open, deep water by oceanic currents during early Eocene. Based on the analysis of paleogeographical distribution of pteropods, it indicates that a Tethys seaway existed during the early Eocene (Ypresian).

UUID: http://zoobank.org/7eb6f8dd-a973-4834-986a-310008476eb0

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J.C., Ali, J.R., and Davis, A.M., 2007, When and where did India and Asia collide? Journal of Geophysical Research, Solid Earth, v. 112, p. 119.Google Scholar
Berger, W.H., 1977, Deep-sea carbonate and deglaciation preservation spike in pteropods and foraminifera: Nature, v. 269, p. 301304.Google Scholar
Bolli, H.M., 1957, The genera Globigerina and Globorotalia in the Paleocene–Lower Eocene Lizard Springs Formation of Trinidad, B.W.I.: Bulletin of United States National Museum, v. 215, p. 6181.Google Scholar
Bosc, L.A.G., 1817, Cléodore. Nouveau Dictionnaire d'Histoire naturelle, appliquée aux arts, a l'agriculture, à l’économie rurale et domestique, à la médicine, etc.: Paris, D'Abel Lanoe, v. 7, 188 p.Google Scholar
Bouchet, P., Rocroi, J.P., Hausdorf, B., Kaim, A., Kano, Y., Nützel, A., Parkhaev, P., Schrödl, M., and Strong, E.E, 2017, Revised classification, nomenclator and typification of gastropod and monoplacophoran families: Malacologia, v. 61, p. 1526.Google Scholar
Brönnimann, P., 1952, Trinidad Paleocene and lower Eocene Globigerinidae: Bulletins of American Paleontology, v. 34, p. 134.Google Scholar
Burg, J.P., Leyreloup, A., Girardeau, J., and Chen, G.M., 1987, Structure and metamorphism of a tectonically thickened continental crust: The Yalu Tsangpo suture zone (Tibet): Philosophical Transactions of the Royal Society A—Mathematical, Physical and Engineering Sciences, v. 321, p. 6786.Google Scholar
Butler, R., 1995, When did India hit Asia? Nature, v. 373, p. 2021.CrossRefGoogle Scholar
Cahuzac, B., and Janssen, A.W., 2010, Eocene to Miocene holoplanktonic Mollusca (Gastropoda) of the Aquitaine Basin, southwest France: Scripta Geologica, v. 141, p. 1193.Google Scholar
Cole, W.S., 1927, A foraminiferal fauna from the Guayabal Formation in Mexico: Bulletins of American Paleontology, v. 14, p. 146.Google Scholar
Cuvier, G., 1804, Mémoire concernant l'animal de l'Hyale, un nouveau genre de mollusques nus, intermédiaire entre l'Hyale et le Clio, et l’établissement d'un nouvel ordre dans la classe des mollusques: Annales du Muséum National d'Histoire Naturelle, v. 4, p. 223234.Google Scholar
Ding, L., Kapp, P., and Wan, X.-Q., 2005, Paleocene–Eocene record of ophiolite obduction and initial India-Asian collision, south central Tibet: Tectonics, v. 24, p. 118.Google Scholar
Ding, L., Qasim, M., Jadoon, I.A.K., Khan, A.M., Xu, Q., Cai, F.-L., Wang, H.-Q., Baral, U., and Yue, Y.-H., 2016, The India-Asia collision in north Pakistan: insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin: Earth and Planetary Science Letters, v. 455, p. 4961.CrossRefGoogle Scholar
d'Orbigny, A.D., 1835–1836, Voyage dans l'Amérique méridionale (le Brésil, la république orientale de l'Uruguay, la république Argentine, la Patagonie, la république du Chili, la république de Bolivia, la république du Pérou), exécuté pendant les années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833. Mollusques: Paris, A. Bertrand; Strasbourg, V. Levrault, v. 5, p. 1104 (1835), 105–184 (1836).Google Scholar
Eames, E.E., 1952, A contribution to the study of the Eocene in western Pakistan and western India C. The description of the Scaphopoda and Gastropoda from standard sections in the Rakhi Nala and Zinda Pir areas of the western Punjab and in the Kohat District: Philosophical Transactions of the Royal Society of London, v. 236, 168 p.Google Scholar
Fichtel, L.V., and Moll, J.P.C., 1798, Testacea microscopica, aliaque minuta ex generibus Argonauta et Nautilus, ad naturam picta et descripta (Microscopische und andere klein Schalthiere aus den geschlechtern Argonaute und Schiffer):Vienna, Camesina, 123 p.Google Scholar
Garvie, C.L., 1996, The molluscan macrofauna of the Reklaw Formation, Marquez Member (Eocene, Lower Claibornian), in Texas: Bulletins of American Paleontology, v. 111, p. 1177.Google Scholar
Gray, J.E., 1840, Shells of molluscous animals, Eastern Zoological Gallery, in Synopsis of the Contents of the British Museum: London, G. Woodfall & Son, p. 89–156.Google Scholar
Han, J.-E., Yu, J., He, C.-G., Meng, Q.-W., Zhu, D.-G., Meng, X.-G., Shao, Z.-G., and Yang, C.-B., 2012, The assemblage of gastropod fossils in Zanda Basin of Tibet and its biostratigraphy: Acta Geoscientica Sinica, v. 33, p. 153166. [in Chinese with English summary]Google Scholar
Herman, Y., and Rosenberg, P.E., 1969. Pteropods as bathymetric indicators: Marine Geology, v. 7, p. 169173.CrossRefGoogle Scholar
Herrmannsen, A.N., 1846, Idicis generum malacozoorum primordia. Nomina subgenerum, generum, familiarum, tribuum, ordinum, classium; adjectis auctoribus, temporibus, locis systematicis atque literariis, etymis, synonymis: Praetermittuntur Cirripedia, Tunicata et Rhizopoda, Cassellis, Fischer, v. 1, p. 1637.Google Scholar
Hodgkinson, K.A., Garvie, C.L., and , A.W.H., 1992, Eocene euthecosomatous Pteropoda (Gastropoda) of the Gulf and eastern coasts of North America: Bulletins of American Paleontology, v. 103, 62 p.Google Scholar
Janssen, A.W., 2003, Notes on the systematics, morphology and biostratigraphy of fossil holoplanktonic Mollusca, 13. Considerations on a subdivision of Thecosomata, with the emphasis on genus group classification of Limacinidae: Cainozoic Research, v. 2, p. 163170.Google Scholar
Janssen, A.W., 2010, Pteropods (Mollusca, Euthecosomata) from the Early Eocene of Rotterdam (The Netherlands): Scripta Geologica, v. 7, p. 161175.Google Scholar
Janssen, A.W., Schnetler, K.I., and Heilmann-Clausen, C., 2007, Notes on the systematics, morphology and biostratigraphy of fossil holoplanktonic Mollusca, 19. Pteropods (Gastropoda, Euthecosomata) from the Eocene Lillebaelt Clay Formation (Denmark, Jylland): Basteria, v. 71, p. 157168.Google Scholar
Janssen, A.W., King, C., and Steurbaut, E., 2011, Notes on the systematics, morphology and biostratigraphy of fossil holoplanktonic Mollusca, 21. Early and middle Eocene (Ypresian–Lutetian) holoplanktonic Mollusca (Gastropoda) from Uzbekistan: Basteria, v. 75, p. 7193.Google Scholar
Janssen, A.W., Jagt, J.W.M., Yazdi, M., Bahrami, A., and Sadri, S., 2013, Early–middle Eocene faunal assemblages from the Soh area, north-central Iran: 1. Introduction and pteropods (Mollusca, Gastropoda, Thecosomata) : Cainozoic Research, v. 10, p. 2334.Google Scholar
Janssen, A.W., Sessa, J.A., and Thomas, E., 2016, Pteropoda (Mollusca, Gastropoda, Thecosomata) from the Paleocene–Eocene Thermal Maximum (United States Atlantic Coastal Plain): Palaeontologia Electronica, 19.3.47A: 126. https://doi.org/10.26879/689.palaeo-electronica.org/content/2016/1662-pteropoda-from-the-usa-petmGoogle Scholar
Jiang, T., Aitchison, J.C., and Wan, X.-Q., 2016, The youngest marine deposits preserved in southern Tibet and disappearance of the Tethyan Ocean: Gondwana Research, v. 32, p. 6475.Google Scholar
Kai, I.S., and Heilmann-Clausen, C., 2011, The molluscan fauna of the Eocene Lillebælt Clay, Denmark: Cainozoic Research, v. 8, p. 4199.Google Scholar
Lalli, C.M., and Gilmer, R.W., 1989, Pelagic Snails: Biology of Holoplanktonic Gastropod Molluscs: Palo Alto, CA, Stanford University Press, 259 p.Google Scholar
Li, G.-B., and Wan, X.-Q., 2003, Eocene microfossils in southern Tibet and the final closing of the Tibet–Tethys: Journal of Stratigraphy, v. 27, p. 99108. [in Chinese with English summary]Google Scholar
Li, G.-B., and Wan, X.-Q., 2004, Eocene ostracoda from Gamba, Xizang (Tibet): Acta Palaeontologica Sinica, v. 43, p. 400406.Google Scholar
Li, G.-B., Wan, X.-Q., and Liu, W.-C., 2005, Paleogene Micropaleontology and Basin Evolution of Southern Tibet: Beijing, Geological Publishing House, 157 p. [in Chinese with English summary]Google Scholar
Li, G.-B., Wan, X.-Q., Jiang, G.-Q., Hu, X.-M., Goudemand, N., Han, H.-D., and Chen, X., 2007, Late Cretaceous foraminiferal faunas from the Saiqu “mélange” in southern Tibet: Acta Geologica Sinica (English Edition), v. 81, p. 917924.Google Scholar
Li, G.-B., Jiang, G.-Q., Hu, X.-M., and Wan, X.-Q., 2009, New biostratigraphic data from the Cretaceous Bolinxiala Formation in Zanda, southwestern Tibet of China and their paleogeographic and paleoceanographic implications: Cretaceous Research, v. 30, p. 10051018.CrossRefGoogle Scholar
Li, G.-B, Jansa, L., Wan, X.-Q, Pan, M., Xiu, D., and Xie, D., 2011, Discovery of radiolaria from Upper Cretaceous oceanic red beds in Daba, Kangmar and its paleogeographic implication: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 312, p. 127137.Google Scholar
Li, X.-F., 2015, Planktonic foraminiferal biostratigraphy of Paleogene in Duina, Yadong, Tibet [M.Sc. Thesis]: Beijing, China University of Geosciences, 63 p. [in Chinese with English summary]Google Scholar
Li, X.-F., and Li, G.-B., 2019, The discovery of Eocene radiolarian fauna from Tüna, Yadong, Southern Tibet, China: Acta Geologica Sinica (English Edition), v. 93, p. 265267.Google Scholar
Liu, G., 1992, Permian to Eocene sediments and Indian passive margin evolution in the Tibetan Himalayas: Tübinger Geowissenschaftliche Arbeiten, Reihe A, no. 13, 268 p.Google Scholar
Liu, J.-B., and Aitchison, J.C., 2002, Upper Paleocene radiolarians from the Yamdrok mélange, south Xizang (Tibet), China: Micropaleontology, v. 48, p. 145154.Google Scholar
Lokho, K., and Kumar, K., 2008, Fossil Pteropods (Thecosomata, holoplanktonic Mollusca) from the Eocene of Assam-Arakan Basin, north-eastern India: Current Science, v. 94, p. 647652.Google Scholar
Luczkowska, E., 1974, Miliolidae (Foraminiferida) from the Miocene of Poland, Part II. Biostratigraphy, palaeoecology and systematics: Acta Palaeontologica Polonica, v. 19, p. 1176.Google Scholar
Meisenheimer, J., 1905, Pteropoda: Wissenschaftliche Ergebnisse der Deutsche Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899, v. 9, 314 p.Google Scholar
Meng, Y.-Z., Ji, Z.-S., Yao, J.-X., Wu, G.-C., Su, Q., Liao, W.-H., and Pan, H.-Z., 2017, Mesozoic fossils discovered in the Paleozoic melange at the Zhaqiong area of Bang county, Tibet: Acta Geologica Sinica, v. 91, p. 812821. [in Chinese with English summary]Google Scholar
Niu, X.-L., 2017, Eocene microfossils from Tüna in southern Tibet and the final closing of the Eastern Tethys [Ph.D. dissertation]: Beijing, China University of Geosciences, 114 p. [in Chinese with English summary]Google Scholar
Niu, X.-L., Li, G.-B., and Wang, T.-Y., 2016, Paleogene calcareous algae and sedimentary environment in Tüna area of Yadong in southern Tibet: Geoscience, v. 30, p. 863870. [in Chinese with English summary]Google Scholar
Nuttall, W.L.F., 1930, Eocene foraminifera of southern Mexico: Journal of Paleontology, v. 4, p. 271293.Google Scholar
Phipps, C.J., 1774, A Voyage Towards the North Pole Undertaken by his Majesty's Command 1773: London, Bowyer & Nichols, 275 p.Google Scholar
Reiss, Z., and Hottinger, L., 1984, The Gulf of Aqaba, Ecological Micropaleontology: Berlin, Springer, 283 p.Google Scholar
Rowley, D.B., 1996, Age of initiation of collision between India and Asia: a review of stratigraphic data: Earth and Planetary Science Letters, v. 145, p. 113.Google Scholar
Schander, C., Aartesen, J.J., and Corgan, J.X., 1999, Families and genera of the Pyramidelloidea (Mollusca: Gastropoda): Bollettino Malacologico, v. 34, p. 145146.Google Scholar
Scotese, C.R., 2013. Map Folio 13, Early Eocene, Ypresian, 52.2 Ma. Paleomap PaleoAtlas for ArcGIS, volume 1, Cenozoic, PALEOMAP Project, Evanston, IL.Google Scholar
Singh, A.D., and Singh, O.P., 2010, Potentiality of Pteropods in reconstruction of the Quaternary climatic and oceanographic history of the Arabian Sea: Gondwana Geological Magazine, v. 25, p. 8188.Google Scholar
Wan, X.-Q., and Ding, L., 2002, Discovery of the latest Cretaceous planktonic foraminifera from Gyirong of southern Tibet and its chronostratigraphic significance: Acta Palaeontologica Sinica, v. 41, p. 8995. [in Chinese with English summary]Google Scholar
Wang, C.-S., Li, X.-H., Hu, X.-M., and Jansa, L., 2002, Latest marine horizon north of Qomolangma (Mt. Everest): implications for closure of Tethys seaway and collision tectonics: Terra Nova, v. 14, p. 114120.CrossRefGoogle Scholar
Wang, T.-Y, Li, G.-B., Aitchison, J.-C., and Sheng, J.-N., 2020, Eocene ostracods from southern Tibet: Implications for the disappearance of Neo-Tethys: Palaeogeography, Palaeoclimatology, Palaeoecology, 539 109488. https://doi.org/10.1016/j.palaeo.2019.109488Google Scholar
Watelet, A., and Lefèvre, T., 1885, Note sur des ptéropodes du genre Spirialis découverts dans le Bassin de Paris: Annales de la Société malacologique de Belgique, v. 15, p. 100103.Google Scholar
Willems, H., Zhou, Z., Zhang, B., and Gräfe, K.U., 1996, Stratigraphy of the Upper Cretaceous and lower Tertiary strata in the Tethyan Himalayas of the Tibet (Tingri area, China): Geologische Rundschau, v. 85, p. 723754.Google Scholar
Yang, S.-Q., and Wang, H.-J., 1985, Jurassic–Cretaceous Nerinea from Xizang: Acta Palaeontologica Sinica, v. 24, p. 403414. [in Chinese with English summary]Google Scholar
Yang, Z.-Y., and Qian, J.-X., 1988, Fossil gastropods from Ngari, Xizang (Tibet): Earth Science, v. 13, p. 457471. [in Chinese with English summary]Google Scholar
Yao, Y.-J., Li, G.-B, Zhang, W.-Y., Li, Y.-W., Lv, B.-B., Han, D.-D., Li, Q., Xiu, D., and Guo, B.-J, 2019, Eocene dinoflagellate biostratigraphy in Tüna, Yadong, Tibet: Acta Geologica Sinica (English Edition), v. 93, p. 284285.Google Scholar
Yin, A., 2006, Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation: Earth Science Reviews, v. 76, p. 1131.CrossRefGoogle Scholar
Yokoyama, Y., Deckker, P.D., Lambeck, K., Johnston, P., and Fifield, L.K., 2001, Sea-level at the Last Glacial Maximum: evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 165, p. 281297.Google Scholar
Yu, W., 1982, Some fossil gastropods from Xizang, in Chinese Academy of Sciences, Paleontology of Xizang: Beijing, Science Press, v. 4, p. 255281. [in Chinese]Google Scholar
Zhang, W.-Y., and Li, G.-B., 2017, The discovery of Eocene charophytes from Duina, Yadong, southern Tibet, China: Acta Micropalaeontologica Sinica, v. 34, p. 360368. [in Chinese with English summary]Google Scholar
Zhang, W.-Y., Li, G.-B., Yao, Y.-J., Li, Y.-W., Wang, T.-Y., Li, X.-F., Li, Q., Xie, D., Shi, W., Guo, B.-J., and Kang, Y.-H., 2019, Eocene sporopollen biostratigraphy in Tüna, Yadong, Tibet: Acta Geologica Sinica (English Edition), v. 93, p. 286287.Google Scholar
Zhou, Z.-C., Willems, H., and Zhang, B.-G., 1997, Marine Cretaceous–Paleogene biofacies and ichnofacies in southern Tibet, China, and their sedimentary significance: Marine Micropaleontology, v. 32, p. 329.Google Scholar