Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:31:02.334Z Has data issue: false hasContentIssue false

The first Cretaceous ophiopluteus skeleton (Echinodermata: Ophiuroidea)

Published online by Cambridge University Press:  28 July 2021

Mike Reich*
Affiliation:
SNSB—Bavarian State Collection of Palaeontology and Geology, Richard-Wagner-Straße 10, 80333Munich, Germany Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333Munich, Germany GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333Munich, Germany

Abstract

Larvae of sea urchins, brittle stars, and allies are common, ecologically important, and diverse members of marine ecosystems in all of the world's oceans today. In contrast to modern representatives, the fossil record of echinoderm larvae is poorly known. This study reports the first ophiopluteus skeleton from Cretaceous sediments worldwide, obtained from chalky sediment of the Isle of Wolin, NW Poland. The evidence presented here, that it is possible to isolate fossil echinoderm larval skeletons from rocks, indicates a hidden diversity of such fragile fossils and thus the possibility of direct geological recording.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrowicz, Z., 1966, Utwory kredowe w krach glacjalnych na wyspie Wolin i w okolicy Kamienia Pomorskiego: Prace Geologiczne, Komisja Nauk Geologicznych, Polska Akademia Nauk, v. 35, p. 1103.Google Scholar
Arnone, M.I., Byrne, M., and Martinez, P., 2015, Echinodermata, in Wanninger, A., ed., Evolutionary Developmental Biology of Invertebrates 6: Deuterostomia: Wien, Springer, p. 158. https://doi.org/10.1007/978-3-7091-1856-6_1.Google Scholar
Balser, E.J., 2002, Phylum Echinodermata: Crinoidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 463482.Google Scholar
Behrens, G., 1878, Ueber die Kreideablagerungen auf der Insel Wollin: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 30, p. 229267.Google Scholar
Böhm, J., 1920, Echinocorys Franciscae nov. sp. und die turone Fauna von Lebbin und Kalkofen auf Wollin: Jahrbuch der Preußischen Geologischen Landesanstalt (Neue Folge), v. 38 [1918] (II), p. 148153. [preprints published in 1919]Google Scholar
Bottjer, D.J., Davidson, E.H., Peterson, K.J., and Cameron, R.A., 2006, Paleogenomics of echinoderms: Science, v. 314, p. 956960. https://doi.org/10.1126/science.1132310.CrossRefGoogle ScholarPubMed
Byrne, M., and Selvakumaraswamy, P., 2002, Phylum Echinodermata: Ophiuroidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 483498.Google Scholar
Dan, K., 1968, Echinoderma, in Kumé, M., and Dan, K., eds., Invertebrate Embryology: Belgrade, Prosveta Press, p. 280–315, 329331.Google Scholar
Deecke, W., 1907, Geologie von Pommern: Berlin, Gebr. Borntraeger, 302 p.Google Scholar
Deflandre-Rigaud, M., 1946, Vestiges microscopiques des larves d'Echinodermes de l'Oxfordien de Villers-sur-Mer: Comptes Rendus des Séances de l'Académie des Sciences, v. 222, p. 908910.Google Scholar
Deflandre-Rigaud, M., 1950, Les sclérites rotiformes des Holothurides fossiles: Annales de Paléontologie, v. 36, p. 145.Google Scholar
Emlet, R.B., Young, C.M., and George, S.B., 2002, Phylum Echinodermata: Echinoidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 531551.Google Scholar
Fritsch, A., 1908, Über eine Echinodermenlarve aus dem Untersilur Böhmens: Zoologischer Anzeiger, v. 33, p. 797798.Google Scholar
Gaździcki, A., Kozur, H., Mock, R., and Trammer, J., 1978, Triassic microfossils from the Korytnica limestones at Liptovská Osada (Slovakia, ČSSR) and their stratigraphic significance: Acta Palaeontologica Polonica, v. 23, p. 351373.Google Scholar
Gilliland, P.M., 1992, Holothurians in the Blue Lias of southern Britain: Palaeontology, v. 35, p. 159210.Google Scholar
Gilliland, P.M., 1993, The skeletal morphology, systematics and evolutionary history of holothurians: Special Papers in Palaeontology, v. 47, 147 p.Google Scholar
Girard, V., Schmidt, A.R., Saint Martin, S., Struwe, S., Perrichot, V., et al. , 2008, Evidence for marine microfossils from amber: PNAS, v. 105, p. 1742617429. https://doi.org/10.1073/pnas.0804980105.CrossRefGoogle ScholarPubMed
Gray, J.E., 1840, A synopsis of the genera and species of the class Hypostoma (Asterias, Linnæus): Annals and Magazine of Natural History (ser. 1), v. 6, p. 275290. https://doi.org/10.1080/03745484009443282.CrossRefGoogle Scholar
Hendler, G., 1991, Echinodermata: Ophiuroidea, in Giese, A.C., Pearse, J.S., and Pearse, V.B., eds., Reproduction of Marine Invertebrates. Volume VI. Echinoderms and Lophophorates: Pacific Grove, The Boxwood Press, p. 355511.Google Scholar
Herrig, E., 1982, Zur Erhaltung von kalkschaligen Mikrofossilien in verkieselten Sedimenten, dargestellt am Flint aus der Schreibkreide (Unter-Maastricht) der Insel Rügen: Zeitschrift für Geologische Wissenschaften, v. 10, p. 13571379.Google Scholar
Herrig, E., 1993, The preservation of ostracod shells in siliceous chalk of the Danish-Polish Furrow (Baltic Sea): Facies, v. 28, p. 7786. https://doi.org/10.1007/BF02539729.CrossRefGoogle Scholar
Herrig, E., 1994, Polycopidae (Crustacea, Ostracoda) aus der borealen Oberkreide des mittleren und südlichen Ostseeraumes: Paläontologische Zeitschrift, v. 68, p. 351359. https://doi.org/10.1007/BF02991348.CrossRefGoogle Scholar
Herrig, E., 2004, Neue Oberkreide-Ostrakoden aus Pleistozän-Geschieben: Bythocytheridae und Paradoxostomatidae: Archiv für Geschiebekunde, v. 4, p. 279304.Google Scholar
Holland, N.D., 1991, Echinodermata: Crinoidea, in Giese, A.C., Pearse, J.S., and Pearse, V.B., eds., Reproduction of Marine Invertebrates. Volume VI. Echinoderms and Lophophorates: Pacific Grove, The Boxwood Press, p. 247299.Google Scholar
Horne, D.J., and Siveter, D.J., 2016, Collecting and processing fossil ostracods: Journal of Crustacean Biology, v. 36, p. 841848. https://doi.org/10.1163/1937240X-00002487.Google Scholar
Jablonski, D., and Lutz, R.A., 1983, Larval ecology of marine benthic invertebrates: paleobiological implications: Biological Reviews, v. 58, p. 2189.CrossRefGoogle Scholar
Kryuchkova, G.A., and Solov'yev, A.N., 1975, O lichinochnoy stadii morskikh ezhey: Paleontologicheskiy Zhurnal, v. [1975] (4), 6371. [in Russian]Google Scholar
Lacalli, T.C., 2000, Larval budding, metamorphosis, and the evolution of life-history patterns in echinoderms: Invertebrate Biology, v. 119, p. 234241. https://doi.org/10.1111/j.1744-7410.2000.tb00010.x.CrossRefGoogle Scholar
Lane, N.G., and Sevastopulo, G.D., 1981, Functional morphology of a microcrinoid: Kallimorphocrinus punctatus n. sp.: Journal of Paleontology, v. 55, p. 1328.Google Scholar
Lefebvre, B., Sumrall, C.D., Shroat-Lewis, R.A., Reich, M., Webster, G.D., et al. , 2013, Palaeobiogeography of Ordovician echinoderms, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography: Geological Society of London, Memoir, v. 38, 173198. https://doi.org/10.1144/M38.14.CrossRefGoogle Scholar
Linnaeus, C., 1758, Systema Naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis locis. Tomus I. Editio decima, reformata: Holmiæ [=Stockholm], Laurentius Salvius, 824 p.CrossRefGoogle Scholar
Lyman, T., 1861, Descriptions of new Ophiuridæ: Proceedings of the Boston Society of Natural History, v. 8, p. 7586.CrossRefGoogle Scholar
McEdward, L.R., and Miner, B.G., 2001, Larval and life-cycle patterns in echinoderms: Canadian Journal of Zoology, v. 79, p. 11251170. https://doi.org/10.1139/cjz-79-7-1125.CrossRefGoogle Scholar
McEdward, L.R., Jaeckle, W.B., and Komatsu, M., 2002, Phylum Echinodermata: Asteroidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 499512.Google Scholar
Melnikova, L.M., Tolmacheva, T.Y., and Ushatinskaya, G.T., 2010, Find of Tremadocian ostracodes in cherts of Kazakhstan: Paleontological Journal, v. 44, p. 3640.CrossRefGoogle Scholar
Metschnikoff, E., 1869, Studien über die Entwickelung der Echinodermen und Nemertinen: Mémoires de l'Académie Impériale des Sciences de St.-Pétersbourg (VIIe série), v. XIV (8), 73 p.Google Scholar
Mortensen, T., 1898, Die Echinodermen-Larven der Plankton-Expedition nebst einer systematischen Revision der bisher bekannten Echinodermenlarven, in Hensen, V., ed., Ergebnisse der im Atlantischen Ocean von Mitte Juli bis Anfang November 1889 ausgeführten Plankton-Expedition der Humboldt-Stiftung, volume II: Kiel, Lipsius, and Leipzig, Tischer, 120 p.Google Scholar
Mortensen, T., 1913, Die Echinodermenlarven der Deutschen Südpolar-Expedition 1901–1903, in Drygalski, E. von, ed., Deutsche Südpolar-Expedition, volume 14, issue 1, part 3, [=Deutsche Südpolar-Expedition: Zoologie, volume 6, issue 1, part 3]: Berlin, G. Reimer, p. 67111.Google Scholar
Mortensen, T., 1920, Studies in the development of crinoids: Papers from the Tortuga Laboratory of the Carnegie Institution of Washington, v. 16, 94 p. [=Carnegie Institution of Washington, Publication, v. 294]Google Scholar
Mortensen, T., 1921, Studies of the Development and Larval Forms of Echinoderms: Copenhagen, G.E.C. Gad, 261 p.CrossRefGoogle Scholar
Mortensen, T., 1931, Contributions to the study of the development and larval forms of echinoderms I–II: Det Kongelige Danske Videnskabernes Selskabs Skrifter (Naturvidenskabelig og mathematisk Afdeling, 9de Række) [=Mémoires de l'Académie Royale des Sciences et des Lettres de Danemark, Copenhague, Section des Sciences, 9me série], v. IV, 39 p.Google Scholar
Mortensen, T., 1937, Contributions to the study of the development and larval forms of echinoderms III: Det Kongelige Danske Videnskabernes Selskabs Skrifter (Naturvidenskabelig og mathematisk Afdeling, 9de Række) [=Mémoires de l'Académie Royale des Sciences et des Lettres de Danemark, Copenhague, Section des Sciences, 9me série], v. VII, 65 p.Google Scholar
Mortensen, T., 1938, Contributions to the study of the development and larval forms of echinoderms IV: Det Kongelige Danske Videnskabernes Selskabs Skrifter (Naturvidenskabelig og mathematisk Afdeling, 9de Række) [=Mémoires de l'Académie Royale des Sciences et des Lettres de Danemark, Copenhague, Section des Sciences, 9me série], v. VII, 59 p.Google Scholar
Müller, J., 1853, Über den allgemeinen Plan in der Entwickelung der Echinodermen: Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (Physikalische Abhandlungen) v. [1852], p. 2565.Google Scholar
Müller, O.F., 1776, Zoologiæ Danicæ Prodromus, seu Animalium Daniæ et Norvegiæ indigenarum charcateres, nomina, et synonyma imprimis popularium: Havniæ [=Copenhagen], Hallageri, 824 p.CrossRefGoogle Scholar
Nakano, H., Hibino, T., Oji, T., Hara, Y., and Amemiya, S., 2003, Larval stages of a living sea lily (stalked crinoid echinoderm): Nature, v. 421, p. 158160. https://doi.org/10.1038/nature01236.CrossRefGoogle Scholar
Nielsen, C., 2018, Origin and diversity of marine larvae, in Carrier, T.J., Reitzel, A.M., and Heyland, A., eds., Evolutionary Ecology of Marine Invertebrate Larvae: Oxford, Oxford University Press, p. 315. https://doi.org/10.1093/oso/9780198786962.003.0001.Google Scholar
O'Hara, T.D., Hugall, A.F., Thuy, B., Stöhr, S., and Martynov, A.V., 2017, Restructuring higher taxonomy using broad-scale phylogenomics: the living Ophiuroidea: Molecular Phylogenetics and Evolution, v. 107, p. 415430. https://doi.org/10.1016/j.ympev.2016.12.006.CrossRefGoogle ScholarPubMed
Pawson, D.L., Gage, J.D., Belyaev, G.M., Mironov, A.N., and Smirnov, A.V., 2003, The deep sea synaptid Protankyra brychia (Echinodermata: Holothuroidea) and its near-surface dwelling planktotrophic larva, Auricularia nudibranchiata: Sarsia, v. 88, p. 159174. https://doi.org/10.1080/00364820310001165.CrossRefGoogle Scholar
Pennington, J.T., and Strathmann, R.R., 1990, Consequences of the calcite skeletons of planktonic echinoderm larvae for orientation, swimming, and shape: The Biological Bulletin, v. 179, p. 121133. https://doi.org/10.2307/1541746.CrossRefGoogle ScholarPubMed
Pessagno, E.A. Jr., and Newport, R.L., 1972, A technique for extracting Radiolaria from radiolarian cherts: Micropaleontology, v. 18, p. 231234.CrossRefGoogle Scholar
Raff, E.C., and Byrne, M., 2006, The active evolutionary lives of echinoderm larvae: Heredity, v. 97, p. 244255. https://doi.org/10.1038/sj.hdy.6800866.CrossRefGoogle ScholarPubMed
Raff, E.C., Villinski, J.A., Turner, F.R., Donoghue, P.C., and Raff, R.A., 2006, Experimental taphonomy shows the feasibility of fossil embryos: PNAS, v. 103, p. 58465851. https://doi.org/10.1073/pnas.0601536103.CrossRefGoogle ScholarPubMed
Rak, Š., Ortega-Hernández, J., and Legg, D.A., 2013, A revision of the Late Ordovician marrellomorph arthropod Furca bohemica from Czech Republic: Acta Palaeontologica Polonica, v. 58, 615628. https://doi.org/10.4202/app.2011.0038.Google Scholar
Rees, C.B., 1954, Continuous plankton records: the distribution of echinoderm and other larvae in the North Sea: Bulletins of Marine Ecology, v. 4, 4767.Google Scholar
Reich, M., 1995, Erster sicherer Nachweis der Elasipoda (Holothuroidea, Echinodermata) aus der Kreide, sowie Bemerkungen zu den Holothurienresten der Oberkreide: Archiv für Geschiebekunde, v. 1, 681688.Google Scholar
Reich, M., 2002, Holothurien (Echinodermata) aus der Oberkreide des Ostseeraumes: Teil 1. Myriotrochidae Théel, 1877: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 224, p. 373409. https://doi.org/10.1127/njgpa/224/2002/373.CrossRefGoogle Scholar
Reich, M., 2003, Holothurien (Echinodermata) aus der Oberkreide des Ostseeraumes: Teil 4. Synaptidae Burmeister, 1837: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 229, p. 7595. https://doi.org/10.1127/njgpa/229/2003/75.CrossRefGoogle Scholar
Reich, M., 2010, The oldest synallactid sea cucumber (Echinodermata: Holothuroidea: Aspidochirotida) : Paläontologische Zeitschrift, v. 84, p. 541546. https://doi.org/10.1007/s12542-010-0067-8.CrossRefGoogle Scholar
Reich, M., 2014, Phanerozoic Echinozoan Echinoderms. Palaeobiology, Phylogeny and Evolutionary History: New Evidences from Micropalaeontology and Fossil Lagerstätten [Habilitation Thesis]: Göttingen, Faculty of Geosciences and Geography, Georg-August University Göttingen, 276 p.Google Scholar
Reich, M., and Wiese, F., 2010, Apodid sea cucumbers (Echinodermata: Holothuroidea) from the upper Turonian of the Isle of Wolin, NW Poland: Cretaceous Research, v. 31, p. 350363. https://doi.org/10.1016/j.cretres.2010.03.001.CrossRefGoogle Scholar
Reich, M., and Stegemann, T.R., 2012, Giant Mesozoic holothurian larvae?: Terra Nostra, v. 2012/3, p. 138139.Google Scholar
Reich, M., Stegemann, T., Hausmann, I.M., Roden, V.J., and Nützel, A., 2018, The youngest ophiocistioid: a first Palaeozoic-type echinoderm group representative from the Mesozoic: Palaeontology, v. 61, p. 803811. https://doi.org/10.1111/pala.12392.CrossRefGoogle Scholar
Rioult, M., 1959, Les vestiges microscopiques d'Echinodermes dans les sédiments jurassiques de Normandie: Bulletin de la Société Linnéenne de Normandie (9e Série), v. 10, p. 3236.Google Scholar
Rögl, F., and Bolli, H.M., 1973, Holocene to Pleistocene planktonic Foraminifera of Leg 15, Site 147 (Cariaco Basin [Trench], Caribbean Sea) and their climatic interpretation, in Edgar, N.T., Kaneps, A.G., and Herring, J.R., eds., Leg 15 of the Cruises of the Drilling Vessel Glomar Challenger San Juan, Puerto Rico to Cristobal, Panama December 1970–February 1971: Initial Reports of the Deep Sea Drilling Project, v. 15, p. 553615. https://doi.org/10.2973/dsdp.proc.15.113.1973.Google Scholar
Schallreuter, R., 1971, Ostrakoden aus Öjlemyrgeschieben (Ordoviz): Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. [1971] (7), p. 423431.Google Scholar
Schallreuter, R., 1975, Ein neuer ordovizischer Holothuriensklerit aus Öjlemyrgeschieben der Insel Gotland: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. [1975] (2), p. 727733.Google Scholar
Schallreuter, R., 1982, Extraction of ostracods from siliceous rocks, in Bate, R.H., Robinson, E., and Sheppard, L.M., eds., Fossil and Recent Ostracods. (British Micropalaeontological Society Series): Chichester, Ellis Horwood Limited, p. 169176.Google Scholar
Schallreuter, R., and Hinz-Schallreuter, I., 2013, Der Öjlemyrflint (Ordoviz)—eine Mikrofossillagerstätte: Geschiebekunde Aktuell, v. 24, p. 6980.Google Scholar
Sewell, M.A., and McEuen, F.S., 2002, Phylum Echinodermata: Holothuroidea, in Young, C.M., ed., Atlas of Marine Invertebrate Larvae: San Diego, Academic Press, p. 513530.Google Scholar
Sieverts-Doreck, H., 1958, Spezielle Arbeitsgebiete der Mikropaläontologie 3. Echinodermen, in Freund, H., ed., Handbuch der Mikroskopie in der Technik. Volume II: Part 3. Mikroskopie in der Geologie Sedimentärer Lagerstätten (Mikropaläontologie): Frankfurt am Main, Umschau-Verlag, p. 238264.Google Scholar
Smiley, S., McEuen, F.S., Chafee, C., and Krishnan, S., 1991, Echinodermata: Holothuroidea, in Giese, A.C., Pearse, J.S., and Pearse, V.B., eds., Reproduction of Marine Invertebrates. Volume VI. Echinoderms and Lophophorates: Pacific Grove, The Boxwood Press, p. 663750.Google Scholar
Smith, A.B., 1997, Echinoderm larvae and phylogeny: Annual Review of Ecology and Systematics, v. 28, p. 219241. https://doi.org/10.1146/annurev.ecolsys.28.1.219.CrossRefGoogle Scholar
Sohn, I.G., 1956, The transformation of opaque calcium carbonate to translucent calcium fluoride in fossil Ostracoda: Journal of Paleontology, v. 30, p. 113114.Google Scholar
Solovjev, A.N., 2014, Echinoid skeleton: Paleontological Journal, v. 48, p. 15401551. https://doi.org/10.1134/S0031030114140135.CrossRefGoogle Scholar
Verrill, A.E., 1885, Results of the explorations made by the Steamer “Albatross,” off the northern coast of the United States in 1883: United States Commission of Fish and Fisheries, Report of the Commissioner [for 1883], p. 503699.CrossRefGoogle Scholar
von Hagenow, F., and Borchardt, W., 1850, Versteinerungen aus der Lebbiner Kreide: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 2, p. 289290.Google Scholar
Williamson, D., 2013, The Origins of Larvae: Dordrecht, The Netherlands, Kluwer, 261 p.Google Scholar
Wissing, F.-N., and Herrig, E. [with cooperation of Reich, M.], 1999, Arbeitstechniken der Mikropaläontologie. Eine Einführung: Stuttgart, Enke, 191 p.Google Scholar
Wray, G.A., 1992, The evolution of larval morphology during the post-Paleozoic radiation of echinoids: Paleobiology, v. 18, p. 258287.CrossRefGoogle Scholar
Zamora, S., Lefebvre, B., Álvaro, J.J., Clausen, S., Elicki, O., et al. , 2013, Cambrian echinoderm diversity and palaeobiogeography, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography: Geological Society of London, Memoir, v. 38, p. 157171. https://doi.org/10.1144/M38.13.Google Scholar