Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T21:14:58.294Z Has data issue: false hasContentIssue false

Endocranial anatomy of a new fossil porpoise (Odontoceti, Phocoenidae) from the Pliocene San Diego Formation of California

Published online by Cambridge University Press:  14 July 2015

Rachel A. Racicot
Affiliation:
Department of Geology and Geophysics, Yale University, 210 Whitney Ave, New Haven, CT 06511, USA,
Timothy Rowe
Affiliation:
Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78712, USA,

Abstract

The Pliocene fossil porpoise SDSNH 65276 has extremely elongate mandibular morphology, unlike that of any marine amniote, and is superficially most similar to the living bird species known as skimmers (Rynchops sp.). Endocasts of the pterygoid sinuses and endocranial cavity were digitally segmented from high-resolution X-ray CT scans of the specimen to explore internal anatomy of functionally and phylogenetically important anatomical features of this specimen and odontocetes in general. The sinuses are similar in volume and shape to extant porpoise species, but the dorsal extension of the preorbital lobes are particularly elongate as in the harbor porpoise (Phocoena phocoena). The cranial endocast also shows similarities with extant porpoises, but has much deeper interhemispheric fissures, which are filled by ossified meninges, particularly a deep falx cerebri and shallower tentorium cerebelli. Ossifications of these parts of the meninges may reflect faster angular accelerations of the head, deeper diving ability, or both. Penetrations of the endocranial cavity for cranial nerves and blood vessels are like those of extant porpoises. The internal skull morphology of this unique delphinoid sheds additional light both on its phylogenetic affinities and novel odontocete adaptations.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balanoff, A. M., Bever, G. S., and Ikejiri, T. 2010. The braincase of Apatosaurus (Dinosauria: Sauropoda) based on computed tomography of a new specimen with comments on variation and evolution in sauropod neuroanatomy. American Museum Novitates, 3677:132.CrossRefGoogle Scholar
Barnes, L. G. 1985. Evolution, taxonomy and antitropical distribution of the porpoises (Phocoenidae, Mammalia). Marine Mammal Science, 1:149165.CrossRefGoogle Scholar
Bever, G. S., Brusatte, S. L., Balanoff, A. M., and Norell, M. A. 2011. Variation, variability, and the origin of the avian endocranium: insights from the anatomy of Alioramus altai (Therapoda: Tyrannosauroidea). PLoS One, 6:e23393.CrossRefGoogle ScholarPubMed
Burrows, A. M. and Smith, T. D. 2005. Form and patterns of the external aspect of the brain and the superficial dural venous sinuses of the river dolphins (Cetacea: Odontoceti) from endocasts and their bearing on phylogenetic reconstruction. Annals of the Carnegie Museum, 74:201215.CrossRefGoogle Scholar
Colbert, M. W., Racicot, R. A., and Rowe, T. 2005. Anatomy of the cranial endocast of the bottlenose dolphin, Tursiops truncatus, based on HRXCT. Journal of Mammalian Evolution, 12:195207.CrossRefGoogle Scholar
Committee On Taxonomy. 2012. List of marine mammal species and subspecies, Society for Marine Mammalogy, http://www.marinemammalscience.org.Google Scholar
Costidis, A. and Rommel, S. A. 2012. Vascularization of air sinuses and fat bodies in the head of the Bottlenose dolphin (Tursiops truncatus): morphological implications on physiology. Frontiers in Physiology, 3:123.CrossRefGoogle ScholarPubMed
Cranford, T. W., Amundin, M., and Norris, K. S. 1996. Functional morphology and homology in the odontocete nasal complex: implications for sound generation. Journal of Morphology, 228:223285.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Fajardo-Mellor, L., Berta, A., Brownell, R. L. Jr., Boy, C., and Goodall, R. N. P. 2006. The phylogenetic relationships and biogeography of true porpoises (Mammalia: Phocoenidae) based on morphological data. Marine Mammal Science, 22:910932.CrossRefGoogle Scholar
Fraser, F. C. and Purves, P. E. 1960. Hearing in cetaceans: evolution of the accessory air sacs and the structure and function of the outer and middle ear in recent cetaceans. Bulletin of the British Museum (Natural History) Zoology, 7:1139.CrossRefGoogle Scholar
Galatius, A., Berta, A., Frandsen, M. S., and Goodall, R. N. P. 2011. Interspecific variation of ontogeny and skull shape among porpoises (Phocoenidae). Journal of Morphology, 272:136148.CrossRefGoogle ScholarPubMed
Gatesy, J., Geisler, J. H., Chang, J., Buell, C., Berta, A., Meredith, R. W., Springer, M. S., and McGowen, M. R. 2013. A phylogenetic blueprint for a modern whale. Molecular and Phylogenetic Evolution, 66:479506.CrossRefGoogle ScholarPubMed
Geisler, J. H. and Luo, Z. 1998. Relationships of Cetacea to terrestrial ungulates and the evolution of cranial vasculature in Cete, p. 163212. InThewissen, J. G. M(ed.), The Emergence of Whales. Plenum Press, New York.CrossRefGoogle Scholar
Gingerich, P. D. 2005. Cetacea, p. 234252. InRose, K. D. and Archibald, J. D.(eds.), Placental Mammals: Origin, Timing, and Relationships of the Major Extant Clades. Johns Hopkins University Press, Baltimore.Google Scholar
Grus, W. E., Shi, P., and Zhang, J. 2007. Largest vomeronasal Type 1 receptor gene repertoire in the semiaquatic platypus. Molecular Biology and Evolution, 24:2,1532,157.CrossRefGoogle ScholarPubMed
Houser, D. S., Finneran, J., Carder, D., Van Bonn, W., Smith, C., Hoh, C., Mattrey, R., and Ridgway, S. 2004. Structural and functional imaging of bottlenose dolphin (Tursiops truncatus) cranial anatomy. Journal of Experimental Biology, 207:3,6573,665.CrossRefGoogle ScholarPubMed
Houser, D. S., Moore, P. W., Johnson, S., Lutmerding, B., Branstetter, B., and Ridgway, S. 2010. Relationship of blood flow and metabolism to acoustic processing centers of the dolphin brain. Journal of the Acoustical Society of America, 128:1,4601,466.CrossRefGoogle ScholarPubMed
Ichishima, H. and Kimura, M. 2005. Haborophocoena toyoshimai, a new early Pliocene porpoise (Cetacea; Phocoenidae) from Hokkaido, Japan. Journal of Vertebrate Paleontology, 25:655664.CrossRefGoogle Scholar
Ichishima, H. and Kimura, M. 2013. New material of Haborophocoena toyoshimai (Odontoceti: Phocoenidae) from the lower Pliocene Embetsu Formation of Hokkaido, Japan. Paleontological Research, 17:127137.CrossRefGoogle Scholar
Jacobs, M., Galaburda, A., McFarland, W., and Morgane, P. 1984. The insular formation of the dolphin brain: quantitative cytoarchitectonic studies of the insular limbic lobe. Journal of Comparative Neurology, 225:396432.CrossRefGoogle ScholarPubMed
Jacobs, M., McFarland, W., and Morgane, P. 1979. The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (Rhinencephalon): the archicortex. Brain Research Bulletin, 4:1108.CrossRefGoogle Scholar
Jacobs, M., Morgane, P., and McFarland, W. 1971. The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus) Rhinic lobe (Rhinencephalon) I: the paleocortex. Journal of Comparative Neurology, 141:205272.CrossRefGoogle ScholarPubMed
Kellogg, R. 1926. The history of whales—their adaptation to life in the water (concluded). The Quarterly Review of Biology, 3:174208.CrossRefGoogle Scholar
Ksepka, D. T., Balanoff, A. M., Walsh, S., Revan, A., and Ho, A. 2012. Evolution of the brain and sensory organs in Sphinsciformes: new data from the stem penguin Paraptenodytes antarcticus. Zoological Journal of the Linnean Society, London, 166:202219.Google Scholar
Lambert, O. 2005. Phylogenetic affinities of the long-snouted dolphin Eurhinodelphis (Cetacea, Odontoceti) from the Miocene of Antwerp, Belgium. Palaeontology, 48:653679.CrossRefGoogle Scholar
Lambert, O. 2008. A new porpoise (Cetacea, Odontoceti, Phocoenidae) from the Pliocene of the North Sea. Journal of Vertebrate Paleontology, 28:863872.CrossRefGoogle Scholar
Lambert, O., Bianucci, G., Post, K., de Muizon, C., Salas-Gismondi, R., M. U, and Reumer, J. 2010. The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature, 466:105108.CrossRefGoogle ScholarPubMed
Lambert, O., de Muizon, C., and Bianucci, G. 2013. The most basal beaked whale Ninoziphius platyrostris Muizon, 1983: clues on the evolutionary history of the family Ziphiidae (Cetacea: Odontoceti). Zoological Journal of the Linnean Society, 167:569598.CrossRefGoogle Scholar
Macrini, T. E. 2009. Description of a digital cranial endocast of Bathygenys reevesi (Merycoidodontidae; Oreodontoidea) and implications for apomorphy-based diagnosis of isolated, natural endocasts. Journal of Vertebrate Paleontology, 29:1,1991,211.CrossRefGoogle Scholar
Marino, L., Conner, R. C., Fordyce, R. E., Herman, L. M., Hof, P. R., Lefebvre, L., Lusseau, D., McCowan, B., Nimchinsky, E. A., Pack, A. A., Rendell, L., Reidenberg, J. S., Reiss, D., Uhen, M. D., Van Der Gucht, E., and Whitehead, H. 2007. Cetaceans have complex brains for complex cognition. PLoS Biology, 5:966972.CrossRefGoogle ScholarPubMed
Marino, L., McShea, D., and Uhen, M. 2004. Origin and evolution of large brains in toothed whales. Anatomical Record, 218A:1,2471,255.CrossRefGoogle Scholar
May-Collado, L. and Agnarsson, I. 2006. Cytochrome b and Bayesian inference of whale phylogeny. Molecular Phylogenetics and Evolution, 38:344354.CrossRefGoogle ScholarPubMed
McFarland, W. L., Jacobs, M. S., and Morgane, P. J. 1979. Blood supply to the brain of the dolphin, Tursiops truncatus, with comparative observations on special aspects of the cerebrovascular supply of other vertebrates. Neuroscience and Biobehavioral Reviews, 3:193.Google Scholar
McGowen, M. R., Spaulding, M., and Gatesy, J. 2009. Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Molecular Phylogenetics and Evolution, 53:891906.CrossRefGoogle Scholar
Mead, J. G. and Fordyce, R. E. 2009. The therian skull: a lexicon with emphasis on the odontocetes. Smithsonian Contributions to Zoology, 627:1248.CrossRefGoogle Scholar
Mellor, L., Cooper, L. N., Torre, J., and Brownell, R. L. Jr. 2009. Paedomorphic ossification in porpoises with an emphasis on the vaquita (Phocoena sinus). Aquatic Mammals, 35:193202.CrossRefGoogle Scholar
Miller, G. S. 1923. The telescoping of the cetacean skull. Smithsonian Miscellaneous Collections, 76:170.Google Scholar
Morgane, P., Jacobs, M., and McFarland, W. 1980. The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configurations of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetacean species. Brain Research Bulletin, 5:1107.CrossRefGoogle Scholar
Murakami, M., Shimada, C., Hikida, Y., and Hirano, H. 2012a. A new basal porpoise, Pterophocaena nishinoi (Cetacea, Odontoceti, Delphinoidea), from the upper Miocene of Japan and its phylogenetic relationships. Journal of Vertebrate Paleontology, 32:1,1571,171.CrossRefGoogle Scholar
Murakami, M., Shimada, C., Hikida, Y., and Hirano, H. 2012b. Two new extinct basal phocoenids (Cetacea, Odontoceti, Delphinoidea), from the upper Miocene Koetoi Formation of Japan and their phylogenetic significance. Journal of Vertebrate Paleontology, 32:1,1721,185.CrossRefGoogle Scholar
Oelschläger, H. H. A. and Oelschläger, J. S. 2009. Brain, p. 133158. InPerrin, W. F., Wursig, B., and Thewissen, J. G. M.(eds.), Encyclopedia of Marine Mammals. Elsevier, New York.Google Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Racicot, R. A. and Berta, A. 2013. Comparative morphology of porpoise (Cetacea: Phocoenidae) pterygoid sinuses: phylogenetic and functional implications. Journal of Morphology, 274:4962.CrossRefGoogle ScholarPubMed
Racicot, R. A. and Colbert, M. W. 2013. Morphology and variation in porpoise (Cetacea: Phocoenidae) cranial endocasts. Anatomical Record, 296:979992.CrossRefGoogle ScholarPubMed
Racicot, R. A., T. A, Deméré, B. L, Beatty, and Boessenecker, R. W. 2014. Unique feeding morphology in a new prognathous extinct porpoise from the Pliocene of California. Current Biology, 24:774779.CrossRefGoogle Scholar
Rowe, T. 1996a. Brain heterochrony and evolution of the mammalian middle ear, p. 7196. InGhiselin, M. and Pinna, G.(eds.), New Perspectives on the History of Life. Volume Memoir 20. California Academy of Sciences, San Francisco, CA.Google Scholar
Rowe, T. 1996b. Coevolution of the mammalian middle ear and neocortex. Science, 273:651654.CrossRefGoogle ScholarPubMed
Rowe, T., Eiting, T. P., Macrini, T. E., and Ketcham, R. A. 2005. Organization of the olfactory and respiratory skeleton in the nose of the gray short-tailed oppossum Monodelphis domestica. Journal of Mammalian Evolution, 12:303336.CrossRefGoogle Scholar
Rowe, T., Macrini, T., and Luo, Z. 2011. Fossil evidence on the origin of the mammalian brain. Science, 332:955957.CrossRefGoogle ScholarPubMed
Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, S. Y. W., Rabosky, D. L., Nielsen, R., Rahbek, C., Glenner, H., S⊘rensen, M. V., and Willerslev, E. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology, 58:573585.CrossRefGoogle ScholarPubMed
Thewissen, J. G. M., Cooper, L. N., Clementz, M. T., Bajpai, S., and Tiwari, B. N. 2007. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature, 450:1,1901,195.CrossRefGoogle ScholarPubMed
Uhen, M. D. 2010. The origin(s) of whales. Annual Reviews of Earth and Planetary Science, 38:189219.CrossRefGoogle Scholar
Weins, J. J. 2006. Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics, 39:3442.CrossRefGoogle Scholar
Yu, L., Jin, W., Wang, J., Zhang, X., Chen, M., Zhou, Z., Lee, H., and Zhang, Y. 2010. Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Molecular Biology and Evolution, 27:1,4671,477.CrossRefGoogle ScholarPubMed
Zwickl, D. J. and Hillis, D. M. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology, 51:588598.CrossRefGoogle ScholarPubMed