Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T23:09:30.629Z Has data issue: false hasContentIssue false

Cephalopods and paleoenvironments of the Fort Cassin Formation (upper Lower Ordovician), eastern New York and adjacent Vermont

Published online by Cambridge University Press:  14 July 2015

Björn Kröger
Affiliation:
1Université des Sciences et Technologies de Lille 1, Sciences de la Terre, Laboratoire de Paléontologie et Paléogéographie du Paléozoïque (LP3), Bâtiment SN5, 59655 Villeneuve d'Ascq Cedex, France; current address, Museum für Naturkunde, Humboldt Universität zu Berlin, D-10115 Berlin, Germany,
Ed Landing
Affiliation:
2∗∗∗New York State Museum, Madison Avenue, Albany, New York 12230,

Abstract

The dramatic late Early Ordovician radiation of cephalopods on tropical paleocontinents is illustrated by the diverse fauna (21 genera, 30 species) of the Fort Cassin Formation (Floian and lower Blackhillsian Stage) in northeast Laurentia. Cephalopods occur through the thin (ca. 30–65 m) depositional sequence of the Fort Cassin but are most common and diverse in mollusk-rich, trilobite-poor parts of the formation that characterize the thrombolite-bearing intervals in the shoaling part of the highstand systems tract. This lithofacies-biofacies linkage persists from the Tribes Hill and Rochdale Formations (lower and lower upper Tremadocian, and upper Skullrockian and Stairsian Stages, respectively), and suggests that the Early Ordovician radiations of cephalopods took place in shallow-marine, thrombolite reef facies of tropical carbonate platforms. These habitats differed strongly from the near-shore, peritidal habitats of the older Cambrian evolutionary radiation. Genus-level diversity and absolute abundance changed little through the Skullrockian-Blackhillsian, but morphologic diversity and body size increased dramatically by the late Early Ordovician. The morphological diversification suggests cephalopods diversified into a wider variety of macropredators and more complex late Early Ordovician ecosystems. Anrangeroceras whitehallense n. gen. and n. sp. is proposed. The following are emended: the Protocycloceratidae, Centrotarphyceras and C. seelyi, Protocycloceras and P. lamarcki, and Rudolfoceras cornuoryx. The following are indeterminate and abandoned: Baltoceras? pusillum Ruedemann, 1906; Comeroceras annuliferum Flower, 1941; Cyptendoceras whitfieldi Ulrich et al., 1944; Endoceras? champlainense Ruedemann, 1906; Wolungoceras valcourense Flower, 1964. Beekmanoceras Ulrich and Foerste, 1936 is a gastropod.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achab, A. and Paris, F. 2006. The Ordovician chitinozoan biodiversification and its leading factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 245:59.CrossRefGoogle Scholar
Barrande, J. 1867. Système Silurien du centre de la Bohême. Vol. 2. Texte Pt. 1. Cephalopodes. Charles Bellman (publisher), Prague and Paris, 711 p.Google Scholar
Bernstein, L. 1992. A revised nomenclature of the Lower-Middle Ordovician Beekmantown Group, St. Laurence lowlands, Quebec and Ontario. Canadian Journal of Earth Sciences, 29:26772694.CrossRefGoogle Scholar
Billings, E. 1859a. Fossils of the Calciferous sandrock including those of a deposit at Mingan, supposed to belong to the formation. Geological Survey of Canada Report for 1858-1859, pp. 230346.Google Scholar
Billings, E. 1859b. Fossils of the Calciferous sandrock including those of a deposit at Mingan, supposed to belong to the formation. Canadian Naturalist and Geologist, 4:345371.Google Scholar
Billings, E. 1862. New Species of Fossils from Different Parts of the Lower, Middle and Upper Silurian rocks of Canada, Geological Survey of Canada. Palaeozoic Fossils, 1(4):96168.Google Scholar
Billings, E. 1865. Paleozoic fossils. Volume 1, containing descriptions and figures of new or little known species of organic remains from the Silurian rocks. Geological Survey of Canada, Montreal, 426 p.Google Scholar
Brainerd, E. and Seely, H. M. 1890. The Calciferous Formation in the Champlain valley. American Museum of Natural History Bulletin, 3:123.Google Scholar
Brett, K. D. and Westrop, S. R. 1996. Trilobites of the Lower Ordovician (Ibexian) Fort Cassin Formation, Champlain valley region, New York State and Vermont. Journal of Paleontology, 70:408427.CrossRefGoogle Scholar
Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11:265270.Google Scholar
Chapman, E. J. 1857. On the occurrence of the genus Cryptoceras in Silurian rocks. Annals and Magazine of Natural History, 2nd Series, 20:114117.CrossRefGoogle Scholar
Chazdon, R. L., Colwell, R. K., Denslow, J. S., and Guariguata, M. R. 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica, p. 285309. In Dallmeier, F. and Comiskey, J. A. (eds.), Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies. Parthenon Publishing, Paris, 671 p.Google Scholar
Chen, J. Y. 1976. Advances in the Ordovician stratigraphy of North China with a brief description of nautiloid fossils. Acta palaeontologica Sinica, 15:5574.Google Scholar
Chen, X., Zhang, Y.-D., and Fan, J.-Y. 2006. Ordovician graptolite evolutionary radiation: a review. Geological Journal, 41:289301.Google Scholar
Clark, T. H. 1934. Structure and stratigraphy of southern Quebec. Geological Society of America Bulletin, 45:120.CrossRefGoogle Scholar
Clarke, J. M. 1903. Classification of the New York series of geologic formations. New York State Museum, Handbook 19, 28 p.Google Scholar
Clarke, J. M. and Schuchert, C. 1899. The nomenclature of the New York series of geological formations. Science, 10 (new series):876, 877.CrossRefGoogle ScholarPubMed
Clarke, K. R. and Warwick, R. M. 1998. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology, 35:523531.CrossRefGoogle Scholar
Clarke, K. R. and Warwick, R. M. 1999. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Marine Ecology Progress Series, 184:2129.CrossRefGoogle Scholar
Colwell, R. K. 2005. Estimates: Statistical estimation of species richness and shared species from samples. Version 7.5. User's Guide and application: http://purl.oclc.org/estimates.Google Scholar
Cushing, H. P. 1916. Geology of the vicinity of Ogdensburg. New York State Museum Bulletin 191, 64 p.Google Scholar
Cushing, H. P. and Ruedemann, R. 1914, Geology of Saratoga Springs and vicinity. New York State Museum Bulletin 169, 177 p.Google Scholar
Denton, E. J. and Gilpin-Brown, J. B. 1961. The effect of light on the buoyancy of the cuttlefish. Journal of the Marine Biological Association of the United Kingdom, 41:343350.CrossRefGoogle Scholar
Dzik, J. 1984. Phylogeny of the Nautiloidea. Palaeontologia Polonica, 45:1203.Google Scholar
Eichwald, E. de. 1860. Lethaea Rossica ou Paléontologie de la Russie. Premiere Volume, Seconde Section de l'ancienne Période. Schweizerbart, Stuttgart, 1654 p.Google Scholar
Evans, D. H. 2005. The Lower and Middle Ordovician cephalopod faunas of England and Wales. Monograph of the Palaeontographical Society, 628:181.Google Scholar
Finnegan, S. and Droser, M. L. 2008. Body size, energetics, and the Ordovician restructuring of marine ecosystems. Paleobiology, 34: 342359.CrossRefGoogle Scholar
Fisher, D. W. 1968. Geology of the Plattsburgh and Rouses Point quadrangles, New York and Vermont. New York State Museum, Map and Chart Series 10, 37 p.Google Scholar
Fisher, D. W. 1977. Correlation of the Hadrynian, Cambrian, and Ordovician rocks in New York State. New York State Museum, Map and Chart Series 25, 75 p.Google Scholar
Fisher, D. W. 1984. Bedrock geology of the Glens Falls-Whitehall region, New York. New York State Museum, Map and Chart Series, 35, 65 p.Google Scholar
Flower, R. H. 1941. Notes on the structure and phylogeny of eurysiphonate cephalopods. Palaeontographica Americana, 3(13):551.Google Scholar
Flower, R. H. 1955. Status of endoceroid classification. Journal of Paleontology, 29:329371.Google Scholar
Flower, R. H. 1957. Nautiloids of the Paleozoic. Geological Society of America Memoir, 67:829852.CrossRefGoogle Scholar
Flower, R. H. 1964. The nautiloid order Ellesmeroceratida (Cephalopoda). New Mexico Institute of Mining and Technology Memoir 12, 164 p.Google Scholar
Flower, R. H. 1968. Cephalopods from the Tiñu Formation, Oaxaca State, Mexico. Journal of Paleontology, 42:804810.Google Scholar
Flower, R. H. and Kummel, B. 1950. A classification of the Nautiloidea. Journal of Paleontology, 24:604–16.Google Scholar
Foerste, A. F. 1921. Notes on Arctic Ordovician and Silurian cephalopods, chiefly from Boothia Felix-King William Land, Bache Peninsula, and Bear Island. Journal of the Scientific Laboratories of Denison University, 19:247306.Google Scholar
Foerste, A. F. 1925. Notes on Cephalopod genera, chiefly coiled Silurian forms. Journal of the Scientific Laboratories of Denison University, 21:169.Google Scholar
Foerste, A. F. 1938. Cephalopoda, p. 6092. In Twenhofel, W. C. (ed.), Geology and Paleontology of the Mingan Islands, Quebec. Geological Society of America Special Paper 11, 132 p.Google Scholar
Frey, R. C., 1989. Paleoecology of well-preserved nautiloid assemblages from a Late Ordovician shale unit, south-west Ohio. Journal of Paleontology, 63:604620.CrossRefGoogle Scholar
Frey, R. C., Beresi, M. S., Evans, D. H., King, A. H., and Percival, I. G. 2004. Nautiloid cephalopods, p. 209213. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Event. Columbia University Press, New York.CrossRefGoogle Scholar
Furnish, W. M. and Glenister, B. F. 1964. Nautiloidea-Ellesmerocerida, p. K129K159. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. K, Mollusca 3. Geological Society of America and the University of Kansas Press, Lawrence.Google Scholar
Hall, J. 1847. Natural History of New York, Palaeontology, 1, Containing Descriptions of the Organic Remains of the Lower Division of the New York System (equivalent of the Lower Silurian Rocks of Europe). New York State Geological Survey, Van Benthuysen, Albany, 338 p.Google Scholar
Hayman, N. W. and Kidd, W. S. F. 2002. The Champlain thrust system in the Whitehall-Shoreham area: influence of pre- and post-thrust normal faults on the present thrust geometry and lithofacies distribution, p. A7-1–A7-24. In McLelland, J. and Karabinos, P. (eds.), Guidebook for field trips in New York and Vermont. New England Intercollegiate Geological Conference 94th Annual Meeting and New York State Geological Association 74th Annual Meeting, Lake George, New York, 27-29 September 2002.Google Scholar
Hintze, L. F. 1953. Lower Ordovician trilobites from western Utah and eastern Nevada. Utah Geological and Mineralogical Survey Bulletin 48.Google Scholar
Holm, G. 1897. Baltoceras, a new genus of the family Orthoceratidae. Geological Magazine, 4:251253.CrossRefGoogle Scholar
Hook, S. C. and Flower, R. H. 1977. Late Canadian (Zones J, K) cephalopod faunas from southwestern United States. New Mexico Bureau of Mines and Mineral Resources Memoir, 32:156.Google Scholar
Hyatt, A. 1884. Genera of fossil cephalopods. Boston Society of Natural History Proceedings, 22:253338.Google Scholar
Hyatt, A. 1894. Phylogeny of an acquired characteristic. Proceedings of the American Philosophical Society, 32:349647.Google Scholar
Hyatt, A. 1900. Cephalopoda, p. 502592. In von Zittel, K. A., Textbook of Paleontology, 1. Second edition, translated and edited by Eastmann, C. R.Macmillan and Co., London, 839 p.Google Scholar
King, A. 1998. A review of the cyclostomiceratid nautiloids, including new taxa from the Lower Ordovician of Öland, Sweden. Palaeontology, 41:335347.Google Scholar
Kobayashi, T. 1935. Suggestions for natural classification and benthonic adaptation of early uncoiled nautiloids. Proceedings of the Tokyo Imperial Academy, 12:296298.CrossRefGoogle Scholar
Koken, E. 1896. Die Leitfossilien. Ein Handbuch für den Unterricht und für des Bestimmen von Versteinerungen. P. Wagner, Berlin, 848 p.Google Scholar
Korn, D. and Klug, C. 2003. Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology, 29:329348.2.0.CO;2>CrossRefGoogle Scholar
Klug, C. and Korn, D. 2004. The origin of ammonoid locomotion. Acta Paleontologica Polonica, 49:235242.Google Scholar
Knopf, E. B. 1927. Some results of recent work in the southern Taconic area. American Journal of Science, 214:429458.CrossRefGoogle Scholar
Knopf, E. B. 1962. Stratigraphy and structure of the Stissing Mountain area, Dutchess County, New York. Stanford University Publications, Geological Sciences, 7:155.Google Scholar
Kröger, B. 2008. A new genus of middle Tremadocian orthoceratoids and the Early Ordovician origin of orthoceratoid cephalopods. Acta Palaeontologica Polonica, 53:745749.CrossRefGoogle Scholar
Kröger, B. 2009. Pulsed cephalopod diversification during the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 273:174183.CrossRefGoogle Scholar
Kröger, B. and Landing, E. 2007. The earliest Ordovician cephalopods of eastern Laurentia—Ellesmerocerids of the Tribes Hill Formation, eastern New York. Journal of Paleontology, 81:841856.CrossRefGoogle Scholar
Kröger, B. and Landing, E. 2008. Onset of the Ordovician cephalopod radiation—Evidence from the Rochdale Formation (middle Early Ordovician, Stairsian) in eastern New York. Geological Magazine, 145:490520.CrossRefGoogle Scholar
Kröger, B., Zhang, Y., and Isakar, M. 2009. Discosorids and Oncocerids (Cephalopoda) of the Middle Ordovician Kunda and Aseri Regional Stages of Baltoscandia and the early evolution of these groups. Geobios, 42:273292.CrossRefGoogle Scholar
Kröger, B., Beresi, M., and Landing, E. 2007. Early orthoceratoid cephalopods of the Argentine Precordillera (Early-Middle Ordovician). Journal of Paleontology, 81:12661283.CrossRefGoogle Scholar
Kuhn, O. 1940. Paläozoologie in Tabellen. Fischer Verlag, Jena, 50 p.Google Scholar
Landing, E. 1988. Cambrian-Ordovician boundary in North America: revised Tremadocian correlations, unconformities, and “glacioeustasy,” p. 4858. In Landing, E. (ed.), The Canadian Paleontology and Biostratigraphy Seminar, Proceedings. New York State Museum Bulletin 462, 157 p.Google Scholar
Landing, E. 2002. Early Paleozoic sea levels and climates: New evidence from the east Laurentian shelf and slope, p. C6-1–C6-22. In McLelland, J. and Karabinos, P. (eds.), Guidebook for Fieldtrips in New York and Vermont, New England Intercollegiate Geological Conference 94th Annual Meeting and New York State Geological Association 74th Annual Meeting, Lake George, New York.Google Scholar
Landing, E. 2007. Ediacaran-Ordovician of east Laurentia-geologic setting and controls on deposition along the New York Promontory, p. 524. In Landing, E. (ed.), Ediacaran-Ordovician of east Laurentia—S. W. Ford memorial volume. New York State Museum Bulletin 510, 93 p.Google Scholar
Landing, E.In press. The Great American Carbonate Bank in northeast Laurentia: its births, deaths, and linkage to continental slope oxygenation (Early Cambrian-Late Ordovician). In Derby, J. (ed.), The Great American Carbonate Bank. American Association of Petroleum Geologists Memoir.Google Scholar
Landing, E. and Kröger, B. 2009. The oldest cephalopods from east Laurentia. Journal of Paleontology, 83:8993.CrossRefGoogle Scholar
Landing, E. and Westrop, S. R. 2004. Environmental patterns in the origin and diversification loci of Early Cambrian skeletalized metazoan: evidence from the Avalon microcontinent, p. 93105. In Lipps, J. H. and Waggoner, B. M. (eds.), Neoproterozoic-Cambrian biological revolutions. Paleontological Society Papers, 10.Google Scholar
Landing, E. and Westrop, S. R. 2006. Early Ordovician faunas, stratigraphy, and sea-level history of the middle Beekmantown Group, northeastern New York. Journal of Paleontology, 80:958980.CrossRefGoogle Scholar
Landing, E., Westrop, S. R., and Knox, L. 1996. Conodonts, stratigraphy, and relative sea-level changes of the Tribes Hill Formation (Lower Ordovician), east-central New York. Journal of Paleontology, 70:652676.CrossRefGoogle Scholar
Landing, E., Westrop, S. R., and Van Aller Hernick, L. 2003. Uppermost Cambrian-Lower Ordovician faunas and Laurentian platform sequence stratigraphy, eastern New York and Vermont. Journal of Palaeontology, 77:7898.Google Scholar
Landing, E., Franzi, D. A., Hagadorn, J. W., Westrop, S. R., Kröger, B., and Dawson, J. 2007. Cambrian of east Laurentia: field workshop in eastern New York and western Vermont, p. 2580. In Landing, E. (ed.), Ediacaran-Ordovician of east Laurentia—S. W. Ford memorial volume. New York State Museum Bulletin 510, 93 p.Google Scholar
Magurran, A. E. 2003. Measuring Biological Diversity. Blackwell Science, Oxford, 260 p.Google Scholar
Miller, J. F., Evans, K. R., Loch, J. D., Ethington, R. L., Stitt, J. H., Holmer, L., and Popov, L. E. 2003. Stratigraphy of the Sauk III interval (Cambrian-Ordovician) in the Ibex area, western Millard County, Utah, and central Texas. Brigham Young University Geology Studies, 47:23118.Google Scholar
Mount, J. F. and Signor, P. W. 1992. Faunas and facies—fact and artifact. Paleoenvironmental control on the distribution of Early Cambrian faunas, p. 2751. In Lipps, J. H. and Signor, P. W. (eds.), Origin and early evolution of the Metazoa. Topics in Geobiology. Vol. 10. Plenum Press, New York.CrossRefGoogle Scholar
Murchison, R. 1839. The Silurian System. London, 768 p., publisher not named.Google Scholar
North American Commission on Stratigraphic Nomenclature. 1983. North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin, 67:841875.Google Scholar
Portlock, J. E. 1843. Report on the Geology of the County of Londonderry and parts of Tyrone and Fermanagh. Dublin (publisher not recorded).Google Scholar
Reyment, R. A. 1958. Some factors in the distribution of fossil cephalopods. Stockholm Contributions in Geology, 1:97184.Google Scholar
Reyment, R. A. 1968. Orthoconic nautiloids as indicators of shoreline surface currents. Journal of Sedimentary Petrology, 38:13871389.CrossRefGoogle Scholar
Ruedemann, R. 1905. Structure of some primitive cephalopods. New York State Museum Bulletin, 80:296341.Google Scholar
Ruedemann, R. 1906. Cephalopoda of the Beekmantown and Chazy Formations. New York State Museum Bulletin, 90:393611.Google Scholar
Salad Hersi, O., Lavoie, D., and Nowlan, G. S. 2003. Reappraisal of the Beekmantown Group sedimentology and stratigraphy, Montréal area, southwestern Quebec: implications for understanding the depositional evolution of the Lower-Middle Ordovician Laurentian passive margin of eastern Canada. Canadian Journal of Earth Sciences, 40:149176.CrossRefGoogle Scholar
Sanders, J. E., Platt, L., and Powers, R. W. 1961. Bald Mountain Limestone, New York: new facts and interpretations relative to Taconic geology. Geological Society of America Bulletin, 72:485487.CrossRefGoogle Scholar
Seely, H. M. 1910. Preliminary report on the geology of Addison County, Vermont. Vermont State Geological Report, 7:257313.Google Scholar
Servais, T., Lehnert, O., Li, J., Mullins, G. L., Munnecke, A., and Vecoli, M. 2008. The Ordovician biodiversification: revolution in the oceanic trophic chain. Lethaia, 41:99109.CrossRefGoogle Scholar
Schröder, H. 1881. Beitrage zur Kenntniss der in ost- und oestpreussischen Diluvial-Geschieben gefundenen Silur-Cephalopoden, Schriften der Phys.-Oekon Gesellschaften in Königsberg, 22.Google Scholar
Schröder, H. 1891. Untersuchungen über silurische Cephalopoden. Paläontologische Abhandlungen, Neue Folge, 1:148.Google Scholar
Shevyrev, A. A. 2006. The cephalopod macrosystem: A historical review, the present state of knowledge, and unsolved problems: 2. Classification of nautiloid cephalopods. Paleontological Journal, 40:4654.CrossRefGoogle Scholar
Teichert, C. 1967. Major features of cephalopod evolution, p. 162210. In Teichert, C. and Yochelson, E. L. (eds.), Essays in paleontology and stratigraphy. University of Kansas, Department of Geology, Special Publication 2.Google Scholar
Teichert, C. 1988. Main features of cephalopod evolution, p. 1179. In Clarke, M. R. and Trueman, E. R. (eds.), The Mollusca. Academic Press, San Diego.Google Scholar
Teichert, C. and Glenister, B. F. 1954. Early Ordovician cephalopod fauna from northwestern Australia. Bulletins of American Paleontology, 35(150):7112.Google Scholar
Ulrich, E. O. and Foerste, A. F. 1936. New Genera of Ozarkian and Canadian cephalopods. Journal of the Scientific Laboratories of Denison University, 30:259290.Google Scholar
Ulrich, E. O., Foerste, A. F., and Miller, A. 1943. Ozarkian and Canadian cephalopods. Pt. II. Brevicones. Geological Society of America Special Papers, 58, 157 p.Google Scholar
Ulrich, E. O., Foerste, A. F., Miller, A., and Unklesbay, A. G. 1944. Ozarkian and Canadian cephalopods. Pt. III. Longicones and summary. Geological Society of America Special Paper 59, 226 p.CrossRefGoogle Scholar
Vanuxem, L. 1842. Geology of New York. Part III. Comprising the Survey of the Third Geological District. W. and A. White and J. Visscher, Albany, 307 p.Google Scholar
Weaver, J. D. 1957. Stratigraphy and structure of the Copake quadrangle, New York. Geological Society of America Bulletin, 68:725762.CrossRefGoogle Scholar
Welby, C., 1961. Bedrock geology of the central Champlain Valley of Vermont. Vermont Geological Survey Bulletin 14, 296 p.Google Scholar
Westermann, G. E. G. 1998. Life habits of nautiloids, p. 263298. In Savazzi, E. (ed.), Functional morphology of the invertebrate skeleton. Wiley and Sons, New York.Google Scholar
Westrop, S. R., Trembley, J. V., and Landing, E. 1995. Declining importance of trilobites in Ordovician nearshore communities: dilution or displacement? Palaios, 10:7579.CrossRefGoogle Scholar
Whitfield, R. P. 1886. Notice of geological investigations along the eastern shore of Lake Champlain, conducted by Prof. H. M. Seely and Pres. Ezra Brainerd of Middlebury College with descriptions of the new fossils. American Museum of Natural History Bulletin, 1:293345.Google Scholar
Whitfield, R. P. 1889. Observations on some imperfectly known fossils from the Calciferous sandrock of Lake Champlain, and description of several new forms. Bulletin of the American Museum of Natural History, 2:4163.Google Scholar
Whitfield, R. P. 1890. Observations on the fauna of the rocks at Fort Cassin, Vermont, with descriptions of a few new species. Bulletin of the American Museum of Natural History, 3:2539.Google Scholar
Winchell, N. H. 1886. 14th Annual Geological Survey Report. Geological and Natural History Survey of Minnesota, 380 p.Google Scholar
Zen, E. 1964. Taconic stratigraphic names: definitions and synonymies. Geological Survey of America Bulletin 1174, 95 p.Google Scholar
Zhuravleva, F. A. 1994. The order Dissodocerida (Cephalopoda). Paleontological Journal, 28(1):115133.Google Scholar