Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T20:54:53.935Z Has data issue: false hasContentIssue false

Cambrian Naraoiids (Arthropoda): Morphology, Ontogeny, Systematics, and Evolutionary Relationships

Published online by Cambridge University Press:  11 August 2017

X.-L. Zhang
Affiliation:
Department of Geology and Key Laboratory for Continental Dynamics of the China Education Ministry, Northwest University, Xian 710069, China,
D.-G. Shu
Affiliation:
Department of Geology and Key Laboratory for Continental Dynamics of the China Education Ministry, Northwest University, Xian 710069, China,
D. H. Erwin
Affiliation:
Department of Paleobiology, MRC-121, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560,

Abstract

Naraoiids, defined as lightly sclerotized arthropods with a dimidiate tergum of two sclerites separated by a single transverse articulation, have been found in the Cambrian and Silurian. During the Cambrian they had a wide distribution coinciding with trilobite realms. This pattern may be related to the breakup of a Neoproterozoic supercontinent, probably Pannotia, which implies that naraoiids originated before the Cambrian “explosion.” Based on new observations on the original material from the Burgess Shale (Middle Cambrian, British Columbia), Naraoia halia is reconsidered as a valid species. The validity is further confirmed by a new record of the occurrence of this species in the Chengjiang Lagerstätte (Lower Cambrian, China). In addition, some structures of N. compacta of the Burgess Shale have been reinterpreted. Two more naraoiid species are redescribed in detail from the Chengjiang Lagerstätte on the basis of more than 1,000 well-preserved specimens. Naraoia spinosa shows dimorphism and Misszhouia longicaudata exhibits geographical variation in the overall shape of the dorsal exoskeleton. Naraoiids may have a protaspis-like larva, but the previously assigned protaspis has proven to be a separate taxon, Primicaris. In dorsal view, naraoiids resemble a giant “degree 0” meraspis (i.e., without thorax), and could have originated from different heterochronic processes, neoteny or hypermorphosis. Naraoiids are generally accepted as vagrant benthos. A predatory/scavenging life mode is supported by functional morphology and recent analogues. A healed injury in M. longicaudata suggests that they could be the prey of larger predators, most likely anomalocaridids. We suggest that differences in exopod composition might represent evolutionary changes through the Early–Middle Cambrian. The monophyly of the Naraoiidae is not firmly established. Similarity to liwiids, supposed to be the close relatives of naraoiids, is limited to overall shape. We exclude naraoiids from the Trilobita, though there do exist a number of similarities between them.

Type
Research Article
Copyright
Copyright © 2007, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. and Briggs, D. E. G. 1991. Taphonomy of non-mineralized tissues, p. 231262. In Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York and London.Google Scholar
Anderson, M. 1994. Sexual Selection. Princeton University Press, Princeton, 599 p.CrossRefGoogle Scholar
Arthur, W. and Farrow, M. 1999. The pattern of variation in centipede segment number as an example of developmental constraint in evolution. Journal of Theoretical Biology, 200:183191.Google Scholar
Arthur, W. and Kettle, C. 2001. Geographic patterning of variation in segment number in geophilomorph centipedes: Clines and speciation. Evolution & Development, 3:3440.Google Scholar
Babcock, L. E. 1993. Trilobite malformations and the fossil record of behavioral asymmetry. Journal of Paleontology, 67:217229.Google Scholar
Babcock, L. E. 2003. Trilobites in Paleozoic predator-prey systems, and their role in reorganization of Early Paleozoic ecosystems, p. 5592. In Kelley, P. H., Kowalewski, M., and Hansen, T. A. (eds.), Predator-Prey Interactions in the Fossil Record. Kluwer Academic/Plenum Publishers, New York.CrossRefGoogle Scholar
Babcock, L. E. and Zhang, W.-T. 1997. Comparative taphonomy of two nonmineralized arthropods: Naraoia (Nektaspida; Early Cambrian, Chengjiang biota, China) and Limulus (Xiphosauida; Holocene, Atlantic Ocean). Bulletin of the National Museum of Natural Science, 10:233250.Google Scholar
Babcock, L. E. and Zhang, W.-T. 2001. Stratigraphy, paleontology and depositional setting of the Chengjiang Lagerstätte (Lower Cambrian), Yunnan, China, p. 6686. In Peng, S.-C., Babcock, L. E., and Zhu, M.-Y. (eds.), Cambrian System of South China. University of Science and Technology of China Press, Hefei.Google Scholar
Babcock, L. E., Zhang, W.-T., and Leslie, S. A. 2001. The Chengjiang Biota: Record of the Early Cambrian diversification of life and clues to exceptional preservation of fossils. GSA Today, 11:49.Google Scholar
Bengtson, S. and Hou, X.-G. 2001. The integument of Cambrian chancelloriids. Acta Palaeontologica Polonica, 46:122.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoir of the Association of Australasian Palaeontologists, 9:364.Google Scholar
Bergström, J. 2001. Chengjiang, p. 337340. In Briggs, D. E. G. and Crowther, P. R. (eds.), Palaeobiology II. Blackwell Science, Oxford.CrossRefGoogle Scholar
Bergström, J. and Hou, X.-G. 1998. Chengjiang arthropods and their bearing on early arthropod evolution, p. 151184. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Bergström, J. and Hou, X.-G. 2003. Arthropod origins. Bulletin of Geosciences, 78:323334.Google Scholar
Briggs, D. E. G. 1976. The arthropod Branchiocaris n. gen., Middle Cambrian, Burgess Shale, British Columbia. Geological Survey of Canada Bulletin, 264:129.Google Scholar
Briggs, D. E. G. and Collins, D. 1988. A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology, 31:779798.Google Scholar
Briggs, D. E. G. and Collins, D. 1999. The arthropod Alalcomenaeus cambricus Simonetta, from the Middle Cambrian Burgess Shale of British Columbia. Palaeontology, 42:953977.Google Scholar
Briggs, D. E. G. and Kear, A. J. 1993. Decay and preservation of polychaetes: Taphonomic thresholds in soft-bodied organisms. Paleobiology, 19: 107135.Google Scholar
Briggs, D. E. G. and Kear, A. J. 1994. Decay and mineralization of shrimps. Palaios, 9:431456.Google Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The Fossils of the Burgess Shale. Smithsonian Institution Press, Washington, DC, 238 p.Google Scholar
Brogniart, A. 1822. Les Trilobites, p. 165. In Brogniart, A. and Desmarest, A. G. (eds.), Histoire naturelle des crustacés fossils, sous les repports zoologiques et géologiques. Paris.Google Scholar
Brusca, R. C. and Brusca, G. J. 2003. Invertebrates. Sinauer Associates, Sunderland, Massachusetts, 936 p.Google Scholar
Bruton, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society, London B, 295:619656.Google Scholar
Budd, G. E. 1999. A nektaspid arthropod from the Early Cambrian Sirius Passet fauna, with a description of retrodeformation based on functional morphology. Palaeontology, 42:99122.Google Scholar
Budd, G. E. and Jensen, S. 2000. A critical reappraisal of the fossil record of bilaterian phyla. Biological Reviews, 75:253295.Google Scholar
Budil, P., Fatka, O., and Bruthansová., J. 2003. Trilobite fauna of the $Snárka Formation at Praha-$Cnerven$yA vrch Hill (Ordovician, Barrandian area, Czech Republic). Bulletin of Geosciences, 78:113117.Google Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28:155171.Google Scholar
Caron, J.-B., Milliken, S., and Rudkin, D. M. 2002. A Late Silurian (Pridolian) naraoiid arthropod from the Bertie Formation of Southern Ontario—delayed fall-out from the Cambrian Explosion. Canadian Paleontology Conference, Ottawa, Programs and Abstracts, 12:36.Google Scholar
Caron, J.-B., Rudkin, D. M., and Milliken, S. 2004. A new Late Silurian (Pridolian) naraoiid (Euarthrapoda: Nektaspida) from the Bertie Formation of southern Ontario, Canada—delayed fallout from the Cambrian explosion. Journal of Paleontology, 78:11381145.2.0.CO;2>CrossRefGoogle Scholar
Chatterton, B. D. E. and Speyer, S. E. 1997. Ontogeny, p. 173247. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1. Trilobita. Revised. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Chen, J.-Y. 2004. The Dawn of the Animal World. Jiangsu Science and Technology Press, Nanjing, 366 p.Google Scholar
Chen, J.-Y. and Erdtmann, B.-D. 1991. Lower Cambrian lagerstätte from Chengjiang, Yunnan, China: Insights for reconstructing early metazoan life, p. 5776. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Chen, J.-Y. and Huang, D.-Y. 2002. A possible Lower Cambrian chaetognath (arrow worm). Science, 298:187.CrossRefGoogle ScholarPubMed
Chen, J.-Y. and Zhou, G.-Q. 1997. The biology of the Chengjiang fauna. Bulletin of the National Museum of Natural Science, 10:11106.Google Scholar
Chen, J.-Y., Edgecombe, G. D., and Ramsköld, L. 1997. Morphological and ecological disparity in naraoiids (Arthropoda) from the Early Cambrian Chengjiang fauna, China. Records of the Australian Museum, 49:124.Google Scholar
Chen, J.-Y., Zhou, G.-Q., and Ramsköld, L. 1995. A new Early Cambrian onychophoran-like animal, Paucipodia gen. nov., from the Chengjiang fauna, China. Transactions of the Royal Society of Edinburgh: Earth Sciences, 85:275282.Google Scholar
Chen, J.-Y., Bergström, J., Lindström, J., and Hou, X.-G. 1991. Fossilized soft-bodied fauna. National Geographic Research & Exploration, 7(1):819.Google Scholar
Chen, J.-Y., Zhou, G.-Q., Zhu, M.-Y., and Yeh, K. 1996. The Chengjiang Biota—A Unique Window of the Cambrian Explosion. The National Museum of Natural Science, Taichung, Taiwan, 222 p. (In Chinese) Google Scholar
Chen, L.-Z., Luo, H.-L., Hu, S.-X., Yin, G.-Y., Jiang, Z.-W., Wu, Z.-L., Li, F., and Chen, A.-L. 2002. Early Cambrian Chengjiang fauna in Eastern Yunnan, China. Yunnan Science and Technology Press, Kunming, 199 p., 28 pls. (In Chinese, with English summary) Google Scholar
Collins, D. 2000. The geology and biology of the Middle Cambrian Burgess Shale, Canada's most important fossil fauna. Canadian Society of Exploration Geophysicists, Conference Abstracts: 141.Google Scholar
Conway Morris, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology, 20:195.Google Scholar
Conway Morris, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society, London, B, 307:507582.Google Scholar
Conway Morris, S. 1998. The Crucible of Creation. Oxford University Press, Oxford, 242 p.Google Scholar
Conway Morris, S. and Peel, J. 1995. Articulated halkieriids from the Lower Cambrian of north Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society, London, B, 347: 305358.Google Scholar
Cotton, T. J. and Braddy, S. J. 2004. Phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh, Earth Science, 94:169193.Google Scholar
Dalziel, I. W. D. 1997. Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin, 09:1642.Google Scholar
Delle Cave, L. and Simonetta, A. M. 1991. Early Paleozoic arthropods and problems of arthropod phylogeny: With some notes on taxa of doubtful affinities, p. 189244. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Dzik, J. and Lendzion, K. 1988. The oldest arthropods of the east European platform. Lethaia, 21:2938.Google Scholar
Edgecombe, G. D. and Ramsköld, L. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Journal of Paleontology, 73:263287.Google Scholar
Erdtmann, B.-D., Steiner, M., and Siegmund, H. 1994. Entwicklungsgeschichte des höheren Lebens an der Wende vom Präkambrium zum Kambrium. Ausfschluss, 45:2635.Google Scholar
Felgenhauer, B. E., Abele, L. W., and Felder, D. L. 1992. Remipedia, p. 225247. In Harrison, F. W. and Humes, A. G. (eds.), Microscopic Anatomy of Invertebrates. Volume 9. Crustacea. Wiley-Liss, New York.Google Scholar
Fortey, R. A. 1997. Classification, p. 289302. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1. Trilobita 1 Revised. The Geological Society of America and the University of Kansas Press, Lawrence.Google Scholar
Fortey, R. A. and Owens, R. M. 1990. Evolutionary radiations in the Trilobita, p. 139164. In Taylor, P. D. and Larwood, G. (eds.), Major Evolutionary Radiations. Clarendon Press, Oxford.Google Scholar
Fortey, R. A. and Theron, J. N. 1994. A new Ordovician arthropod, Soomaspis, and the agnostid problem. Palaeontology, 37:841861.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’: Decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57:1333.Google Scholar
Gabbott, S. E., Hou, X.-G., Norry, M. J., and Siveter, D. J. 2004. Preservation of Early Cambrian animals of the Chengjiang biota. Geology, 32: 901904.Google Scholar
Geyer, G. 1998. Intercontinental, trilobite-based correlation of the Moroccan Early Middle Cambrian. Canadian Journal of Earth Sciences, 35:374401.Google Scholar
Geyer, G. and Shergold, J. 2000. The quest for internationally recognized divisions of Cambrian time. Episodes, 23:188195.Google Scholar
Gould, S. J. 1989. Wonderful Life: The Burgess Shale and the Nature of History. W. W. Norton, New York, 347 p.Google Scholar
Gruner, H. E. 1993. Lehrbuch der speziellen Zoologie, Bd 1, Wirbellose, 4. Teil: Arthropoda (ohne Insecta). Fischer, Stuttgart, 666 p.Google Scholar
Hagadorn, J. W. 2002. Chengjiang: Early record of the Cambrian Explosion, p. 3560. In Bottjer, D. J., Etter, W., Hagadorn, J. W., and Tang, C. M. (eds.), Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life. Columbia University Press, New York.Google Scholar
Hammann, W., Laske, R., and Pillola, G. L. 1990. Tarricoia arrusensis n. g. n. sp., an unusual trilobite-like arthropod. Rediscovery of the ‘Phyllocarid’ Beds of Taricoo (1922) in the Ordovician ‘Puddinga’ sequence of Sardinia. Bolletino della Societa Palaeontologica Italiana, 29:163178.Google Scholar
Hou, X.-G. 1987. Three new large arthropods from Lower Cambrian, Chengjiang, eastern Yunnan. Acta Palaeontologica Sinica, 26:272–85.Google Scholar
Hou, X.-G. 1993. The arthropod Naraoia from the Lower Cambrian Chengjiang fauna. Lundadagarna I Historisk Geologi och Paleontologi, III, Abstract: 12.Google Scholar
Hou, X.-G. and Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45:1115.Google Scholar
Hou, X.-G., Chen, J.-Y., and Lu, H.-Z. 1989. Early Cambrian new arthropods from Chengjiang, Yunnan. Acta Palaeontologica Sinica, 28:4257.Google Scholar
Hou, X.-G., Ramsköld, L., and Bergström, J. 1991. Composition and preservation of the Chengjiang fauna—a Lower Cambrian soft-bodied biota. Zoologica Scripta, 20:395411.Google Scholar
Hou, X.-G., Siveter, D. J., Williams, M., and Feng, X.-H. 2002. A monograph of the bradoriid arthropods from the Lower Cambrian of southwest China. Transactions of the Royal Society of Edinburgh: Earth Sciences, 92: 347409.Google Scholar
Hou, X.-G., Aldridge, R. J., Bergström, J., Siveter, D. J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Blackwell Science, Oxford, 233 p.Google Scholar
Hou, X.-G., Bergström, J., Wang, H.-F., Feng, X.-F., and Chen, A.-L. 1999. The Chengjiang Fauna—Exceptionally Well-Preserved Animals from 530 Million Years Ago. Yunnan Science and Technology Press, Kunming, 170 p. (In Chinese with English summary) Google Scholar
Huang, D.-Y., Vannier, J., and Chen, J.-Y. 2003. Anatomy and life styles of Early Cambrian priapulid worms exemplified by Corynetis and Anningella from the Early Cambrian Maotianshan Shale (southwest China). Lethaia, 37:2133.Google Scholar
Huang, D.-Y., Vannier, J., and Chen, J.-Y. 2004a. Recent Priapulidae and their early Cambrian ancestors: Comparisons and evolutionary significance. Geobios, 37:217228.Google Scholar
Huang, D.-Y., Chen, J.-Y., Vannier, J., and Saiz-Salinas, J. I. 2004b. Early Cambrian sipunculan worms from southwest China. Proceedings of the Royal Society of London, B, 271:16711676.Google Scholar
Hughes, C. P. 1975. Redescription of Burgessia bella from the Middle Cambrian Burgess Shale, British Columbia. Fossils and Strata, 4:415436.Google Scholar
Hughes, N. C. 2003. Trilobite tagmosis and body patterning from morphological and developmental perspectives. Integrative and Comparative Biology, 43:185206.Google Scholar
Jago, J. B. and Haines, P. W. 2002. Repairs to an injured early Middle Cambrian trilobite, Elkedra Area, Northern Territory. Alcheringa, 26:1921.Google Scholar
Jell, P. A. and Adrain, J. M. 2003. Available generic names for trilobites. Memoirs of the Queensland Museum, 48:331553.Google Scholar
Kettle, C., Johnstone, J., Jowett, T., Arthur, H., and Arthur, W. 2003. The pattern of segment Formation, as revealed by engrailed expression, in a centipede with variable number of segments. Evolution & Development, 5:198207.CrossRefGoogle Scholar
Klingenberg, C. P. 1998. Heterochrony and allometry: The analysis of evolutionary change in ontogeny. Biological Reviews, 73:79123.Google Scholar
Landing, E. 1994. Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology, 22:179184.Google Scholar
Leslie, S. A., Babcock, L. E., Mitchell, J. C., and Zhang, W.-T. 1996. Phosphatization and its relationship to exceptional preservation of fossils in the Chengjiang Lagerstätte (Lower Cambrian, China). Geological Society of America Abstracts with Programs, 27:294.Google Scholar
Li, Y.-W. 1975. On the Cambrian Ostracoda with new material from Sichuan, Yunnan and southern Shaanxi, China. Professional Papers on Stratigraphy and Paleontology, 2:3772.Google Scholar
Li, Z.-X., Zhang, L., and Powell, C. M. 1995. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23:407410.Google Scholar
Lieberman, B. S. 2003. Biogeography of Trilobita during the Cambrian radiation: Deducing geological processes from trilobite evolution. In Lane, P. D., Siveter, D. J., and Fortey, R. A. (eds.), Trilobites and Their Relatives. Special Papers in Palaeontology, 70:5972.Google Scholar
Lin, J.-P. 2003. Systematics and Taphonomy of Naraoia and Skania (Arthropoda) from Guizhou, China, and western North America. Unpublished M.S. thesis, Ohio State University, Columbus, 84 p.Google Scholar
Lin, J.-P., Babcock, L. E., Zhao, Y.-L., and Zhang, X.-L. In press. Two Cambrian arthropods (Naraoia and Skania) from Guizhou, China, and western North America. Journal of Paleontology.Google Scholar
Lin, J.-P., Gon, S. M. III, Gehling, J. G., Babcock, L. E., Zhao, Y.-L., Zhang, X.-L., Hu, S.-X., Yuan, J.-L., Yu, M.-Y., and Peng, J. 2006. A Parvancorina-like arthropod from the Cambrian of South China. Historical Geology, 18:3345.Google Scholar
Linnaeus, C. 1758 [1757] Systema naturae per regna tri naturae, sedundum classes, ordines, genera, species cum characteribus differentiis, synonymis, locis. Edito decimal, reformata. Laauretii Salvii, Holmiae, 824 pp.Google Scholar
Lu, Y.-H. 1940. On the ontogeny and phylogeny of Redlichia intermedia Lu (sp. nov.). Bulletin of the Geological Society of China, 20:333342.Google Scholar
Lu, Y.-H. 1950. New species of Redlichia . Geological Review, 15:46.Google Scholar
Luo, H.-L., Jiang, Z.-W., and Tang, L. 1996. Stages, zones and correlations of the Lower Cambrian in China. In The Geological Society of China (ed.), Progress in Geology of China—Papers to 30th IGC. China Ocean Press, Beijing.Google Scholar
Luo, H.-L., Hu, S.-X., Zhang, S.-S., and Tao, Y.-H. 1997. New occurrence of the Early Cambrian Chengjiang fauna from Haikou, Kunming, Yunnan Province. Acta Geologica Sinica, 71:97104. (In Chinese with English summary) Google Scholar
Luo, H.-L., Hu, S.-X., Chen, L.-Z., Zhang, S.-S., and Tao, Y.-H. 1999. Early Cambrian Chengjiang Fauna from the Kunming Region, China. Yunnan Science and Technology Press, Kunming, 129 p.Google Scholar
Matthew, G. F. 1899. Studies on Cambrian faunas, no. 3: Upper Cambrian faunas of Mt. Stephen, British Columbia. Transactions of the Royal Society of Canada, Series 2, 5:3966.Google Scholar
McKinney, M. L. and McNamara, K. J. 1991. Heterochrony: The Evolution of Ontogeny. New York, Plenum Press, 437 p.Google Scholar
Melnikova, L. M., Siveter, D. J., and Williams, M. 1997. Cambrian Bradoriida and Phosphatocopida (Arthropoda) of the former Soviet Union. Journal of Micropalaeontology, 16:179191.Google Scholar
Müller, K. J. and Waloszek, D. 1987. Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Fossils and Strata, 19:1124.Google Scholar
Nedin, C. 1995. The Emu Bay Shale, a Lower Cambrian fossil Lagerstätte, Kangaroo Island, South Australia. In Jell, P. A. (ed.), APC94: Papers from the First Australian Palaeontological Convention. Association of Australasian Palaeontologists Memoir, 18:3140.Google Scholar
Nedin, C. 1999. Anomalocaris predation on nonmineralized and mineralized trilobites. Geology, 27:987990.Google Scholar
Pelechaty, S. M. 1996. Stratigraphic evidence for the Siberia-Laurentia connection and Early Cambrian rifting. Geology, 24:719722.Google Scholar
Peng, S.-C. and Robison, R. A. 2000. Agnostoid biostratigraphy across the Middle–Upper Cambrian boundary in Hunan, China. Journal of Paleontology, 74(supp. 4): 1104.Google Scholar
Petrovich, R. 2001. Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and some other classical localities. American Journal of Science, 301:683726.Google Scholar
Pocock, K. J. 1964. Estaingia, a new trilobite genus from Lower Cambrian of South Australia. Palaeontology, 7:458471.Google Scholar
Poulson, C. 1967. Fossils from the Lower Cambrian of Bornholm. Matematisk-fysiske Meddelelser, 36:148.Google Scholar
Qian, Y. and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Raff, R. A. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. University of Chicago Press, Chicago, 544 p.Google Scholar
Ramsköld, L. and Edgecombe, G. D. 1996. Trilobite appendage structure—Eoredlichia reconsidered. Alcheringa, 20:269276.Google Scholar
Ramsköld, L., Chen, J.-Y., Edgecombe, G. D., and Zhou, G.-Q. 1996. Preservational folds simulating tergite junctions in tegopeltid and naraoiid arthropods. Lethaia, 29:1520.Google Scholar
Ramsköld, L., Chen, J.-Y., Edgecombe, G. D., and Zhou, G.-Q. 1997. Cindarella and the arachnate clade Xandarellida (Arthropoda, Early Cambrian) from China. Transactions of the Royal Society of Edinburgh: Earth Science, 88:1938.Google Scholar
Raymond, P. E. 1920. Phylogeny of the Arthropoda with especial reference to the trilobites. American Naturalist, 54:398413.CrossRefGoogle Scholar
Repina, L. N. and Okuneva, O. G. 1969. Cambrian arthropods of the Maritime Territory. Palaeontologischeskii Zhurnal, 1969(1):95103.Google Scholar
Robison, R. B. 1984. New occurrence of the unusual trilobite Naraoia from the Cambrian of Idaho and Utah. University of Kansas Paleontological Contributions, 112:18.Google Scholar
Rominger, C. 1887. Description of primordial fossils from Mt. Stephens, N. W. Territory of Canada. Proceedings of the Academy of Natural Sciences at Philadelphia, 1887:1219.Google Scholar
Rudkin, D. M., Young, G. A., Elias, R. J., and Dobrzanski, E. P. 2003. The world's biggest trilobite—Isotelus rex new species from the Upper Ordovician of Northern Manitoba, Canada. Journal of Paleontology, 77:99112.Google Scholar
Scholtz, G. 1997. Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. The Systematics Association, Special Volume, Series 55:317332. Chapman and Hall, London.Google Scholar
Schram, F. R. 1986. Crustacea. Oxford University Press, Oxford, 620 p.Google Scholar
Schwimmer, D. R. and Montante, W. M. 2002. Exceptional fossil preservation in the Conasauga Formation, Middle Cambrian of western Georgia. Geological Society of America, Abstracts with Program, 31:65.Google Scholar
Shu, D.-G., Chen, L., Han, J., and Zhang, X.-L. 2001a. An Early Cambrian tunicate from China. Nature, 411:472473.CrossRefGoogle ScholarPubMed
Shu, D.-G., Geyer, G., Chen, L., and Zhang, X.-L. 1995. Redlichiacean trilobites with preserved soft parts from the Lower Cambrian Chengjiang fauna (South China). In Geyer, G. and Landing, E. (eds.), Morocco '95—the Lower Cambrian standard of western Gondwana. Beringeria Special Issue, 2:203241.Google Scholar
Shu, D.-G., Conway Morris, S., Han, J., Chen, L., Zhang, X.-L., Zhang, Z.-F., Liu, H.-Q., and Li, Y., Liu, J.-N. 2001b. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature, 414: 419424.Google Scholar
Siebold, C. T. E. and Stannius, H. 1848. Lehruch der verliechenden Anatomie der wirbellosen Tiere. Viet, Berlin.Google Scholar
Simonetta, A. M. 1970. Studies on non-trilobite arthropods of the Burgess Shale (Middle Cambrian). Palaeontographica Italica, 66:3545.Google Scholar
Simonetta, A. M. and Delle Cave, L. 1975. The Cambrian non-trilobite arthropods from the Burgess Shale of British Columbia. A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographica Italica, 69:137.Google Scholar
Speyer, S. E. and Chatterton, B. D. E. 1989. Trilobite larvae and larval ecology. Historical Biology, 3:2760.Google Scholar
Steiner, M., Zhu, M.-Y., Zhao, Y.-L., and Erdtmann, B.-D., 2005. Lower Cambrian Burgess Shale-type fossil associations of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:129152.Google Scholar
Strauss, R. E. 1987. On allometry and relative growth in evolutionary studies. Systematic Zoology, 36:7275.Google Scholar
Sun, W.-G. and Huo, X.-G. 1987a. Early Cambrian medusae from Chengjiang, Yunnan, China. Acta Palaeontologica Sinica, 26:257271.Google Scholar
Sun, W.-G. and Huo, X.-G. 1987b. Early Cambrian worms from Chengjiang, Yunnan, China. Acta Palaeontologica Sinica, 26:300305.Google Scholar
Vannier, J. and Chen, J.-Y. 2002. Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia, 35:107120.Google Scholar
Vinther, J. and Nielsen, C. 2005. The Early Cambrian Halkieria is a molluscan. Zoologica Scripta, 34:8189.Google Scholar
Walcott, C. D. 1911. Middle Cambrian Merostomata. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections, 57:1740.Google Scholar
Walcott, C. D. 1912. Cambrian geology and paleontology, II, Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57:146228.Google Scholar
Walcott, C. D. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85:146.Google Scholar
Waloszek, D. 1993. The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata, 32:1202.Google Scholar
Waloszek, D. 1995. The Upper Cambrian Rehbachiella, its larval development, morphology and significance for the phylogeny of Branchiopoda and Crustacea. Hydrobiologia, 298:113.Google Scholar
Waloszek, D. 2003a. Cambrian ‘Orsten’-type preserved arthropods and the phylogeny of Crustacea, p. 6987. In Legakis, A., Sfenthourakis, S., Polymeni, R., and Thessalou-Legaki, M. (eds.), The New Panorama of Animal Evolution. Proceedings of 18th International Congress of Zoology. Pensoft Publishers, Sofia and Moscow.Google Scholar
Waloszek, D. 2003b. The ‘Orsten’ window—a three-dimensionally preserved Upper Cambrian meiofauna and its contribution to our understanding of the evolution of Arthropoda. Paleontological Research, 7:7188.Google Scholar
Waloszek, D. and Müller, K. J. 1990. Stem-lineage crustaceans from the Upper Cambrian of Sweden and their bearing upon the monophyletic origin of Crustacea and the position of Agnostus . Lethaia, 23:409427.Google Scholar
Waloszek, D. and Müller, K. J. 1997. Cambrian ‘Orsten’-type arthropods and the phylogeny of Crustacea, p. 139154. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. The Systematics Association Special Volume Series 55. Chapman and Hall, London.Google Scholar
Waloszek, D. and Müller, K. J. 1998. Early arthropod phylogeny in light of the Cambrian “Orsten” fossils, p. 185231. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Westheide, W. and Rieger, R. 2004. Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Spektrum Akademischer Verlag, Heidelberg and Berlin, 919 p.Google Scholar
Whittington, H. B. 1959. Ontogeny of Trilobita, p. 127144. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Whittington, H. B. 1971. Redescription of Marrella splendens (Trilobitoidea) from the Burgess Shale, Middle Cambrian, British Columbia. Bulletin of the Geological Survey, Canada, 209:124.Google Scholar
Whittington, H. B. 1975. Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia. Fossils and Strata, 4:97136.Google Scholar
Whittington, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, B, 280:409443.Google Scholar
Whittington, H. B. 1985a. The Burgess Shale. Yale University Press, New Haven, 151 p.Google Scholar
Whittington, H. B. 1985b. Tegopelte gigas, a second soft-bodied trilobite from the Burgess Shale, Middle Cambrian, British Columbia. Journal of Paleontology, 59:12511274.Google Scholar
Whittington, H. B. 1992. Trilobites. The Boydell Press, Woodbridge, 145 p., 120 pls. Google Scholar
Whittington, H. B. 1997. Morphology of the exoskeleton, p. 186. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1. Trilobita (Revised). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wills, M. A. 1997. A phylogeny of recent and fossil Crustacea derived from morphological characters, p. 189209. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. The Systematics Association Special Volume Series 55. Chapman and Hall, London.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33105. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Yager, J. and Carpenter, J. H. 1999. Speleonectes epilimnius new species (Remipedia, Speleonectidae) from surface water of an Anchialine Cave on San Salvador Island, Bahamas. Crustaceana, 72:965977.Google Scholar
Yuan, J.-L. and Zhao, Y.-L. 1999. Subdivision and correlation of Lower Cambrian in southwest China, with a discussion of the age of Early Cambrian series biota. Acta Palaeontologica Sinica, 38(supplement):116131. (In Chinese with English summary) Google Scholar
Yuan, J.-L., Zhao, Y.-L., Li, Y., and Huang, Y.-Z. 2002. Trilobite fauna of the Kaili Formation (uppermost Lower Cambrian-lower Middle Cambrian) from southeastern Guizhou, South China. Shanghai Science and Technology Press, Shanghai, 423 p.Google Scholar
Zhang, W.-T. 1951. Trilobites from the Shipai Shale and their stratigraphical significance. Huai Shuan (Newsletter of the Geological Society of China), 2:10.Google Scholar
Zhang, W.-T. and Hou, X.-G. 1985. Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia. Acta Palaeontologica Sinica, 24:591595.Google Scholar
Zhang, W.-T., Lu, Y.-H., Zhu, Z.-L., Qian, Y., Lin, H.-Z., Zhou, Z.-Y., Zhang, S.-G., and Yuan, J.-L. 1980. Cambrian trilobite faunas of Southwest China. Palaeontographica Sinica, 159(16): 1497. (In Chinese with English summary) Google Scholar
Zhang, X.-L. 1995. Naraoiids from the Chengjiang Lagerstätte. Unpublished MS thesis, Northwest University at Xian (China), 51 p., 20 pls. (In Chinese with English abstract) Google Scholar
Zhang, X.-L. and Shu, D.-G. 1996. Preservation and post-mortem decay of naraoiids from the Chengjiang Lagerstätte. Journal of Northwest University, 26(supp.):454458. (In Chinese with English abstract) Google Scholar
Zhang, X.-L., Shu, D.-G., and Geyer, G. 1995. A new genus of naraoiids, p. 30. In Chen, J.-Y., Edgecombe, G., and Ramsköld, L. (eds.), International Cambrian Explosion Symposium. (April, 1995, Nanjing, Program and Abstract).Google Scholar
Zhang, X.-L., Shu, D.-G., Li, Y., and Han, J. 2001. New sites of Chengjiang fossils: Crucial windows on the Cambrian explosion. Journal of the Geological Society of London, 158:211218.Google Scholar
Zhang, X.-L., Han, J., Zhang, Z.-F., Liu, H.-Q., and Shu, D.-G. 2003. Reconsideration of the supposed naraoiid larva from the Early Cambrian Chengjiang Lagerstätte, South China. Palaeontology, 46:447465.Google Scholar
Zhang, X.-L., Han, J., Zhang, Z.-F., Liu, H.-Q., and Shu, D.-G. 2004. Redescription of the Chengjiang arthropod Squamacula clypeata Hou and Bergström from the Lower Cambrian, southwest China. Palaeontology, 47: 113.Google Scholar
Zhao, Y.-L., Yuan, J.-L., Zhu, M.-Y., Yang, X.-L., and Peng, J. 2003. The occurrence of genus Marrella (Trilobitoidae) in Asia. Progress in Natural Science, 13:708–701.Google Scholar
Zhao, Y.-L., Yuan, J.-L., Zhu, M.-Y., Yang, R.-G., Guo, Q.-J., Qian, Y., Huang, Y.-Z., and Pan, Y. 1999. A progress report on research on the Early Middle Cambrian Kaili biota, Guizhou, P. R. C. Acta Palaeontologica Sinica, 38(supp.):115. (In Chinese with English summary) Google Scholar
Zhu, M.-Y. 1997. Trace fossils of Yunnan. Bulletin of National Museum of Natural Science, 10:275312.Google Scholar
Zhu, M.-Y., Babcock, L. E., and Steiner, M. 2005. Fossilization modes in the Chengjiang Lagerstatte (Cambrian of China): Testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:3146.Google Scholar
Zhu, M.-Y., Zhang, J.-M., and Li, G.-X. 2001. Sedimentary environments of the Early Cambrian Chengjiang biota: Sedimentology of the Yu'anshan Formation in Chengjiang County, eastern Yunnan, p. 80105. In Zhu, M.-Y., Van Iten, H., Peng, S.-C., and Li, G.-X. (eds.), The Cambrian of South China. Acta Palaeontologica Sinica, 40 (supplement).Google Scholar
Zhu, M.-Y., Van Iten, H., Cox, R. S., Zhao, Y.-L., and Erdtmann, B. D. 2000. Occurrence of Byronia Matthew and Sphenothallus Hall in the Lower Cambrian of China. Paläontologische Zeitschrift, 74:227238.Google Scholar
Zhuravlev, A. Y. 1995. Preliminary suggestions on the global Early Cambrian Zonation, p. 147160. In Geyer, G. and Landing, E. (eds.), Morocco '95: The Lower-Middle Cambrian standard of western Gondwana. Beringeria, Special Issue 2.Google Scholar