Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T18:38:39.104Z Has data issue: false hasContentIssue false

Ventral structure and ontogeny of the late Furongian (Cambrian) trilobite Guangxiaspis guangxiensis Zhou, 1977 and the diphyletic origin of the median suture

Published online by Cambridge University Press:  11 August 2017

Xue-Jian Zhu
Affiliation:
State Key Laboratory on Palaeontology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, ,
Nigel C. Hughes
Affiliation:
Department of Earth Sciences, University of California, Riverside, California 92521, USA,
Shan-Chi Peng
Affiliation:
State Key Laboratory on Palaeontology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, ,

Abstract

Articulated meraspid and holaspid exoskeletons of Guangxiaspis guangxiensis from the Guole Township, Jingxi County, Guangxi Province, China, are preserved in mudstone deposited during an obrution event. The species has a short dorsal pre-cranidial median suture that splits ventrally into a pair of posteriorly divergent connective sutures. The rostral plate of G. guangxiensis is thus triangular in outline, as in the co-occurrent Shergoldia laevigata, which also bore a conterminant hypostome. These two taxa appear to be closely related. The cephalic venter of Shergoldia laevigata has recently been interpreted to suggest a diphyletic origin of the median suture within the order Asaphida, but Guangxiaspis guangxiensis, Shergoldia laevigata and other tsinaniid trilobites display several characters reminiscent of members of the non-asaphide suborder Leiostegiina. These include swellings adjacent to the margins of the L1 glabellar lobe, the shape and furrows of the glabella, a semi-circular pygidium with a long and thin axis, and macrospinous first opisthopleurae of the holaspid pygidium. Based on these characters and on other new information on the early ontogeny of other tsinaniids, all these taxa likely belong within Leiostegiina. This suggests that the median suture arose independently in corynexochide and asaphide trilobites. The degree of convergence between S. laevigata and members of the derived asaphide family Asaphidae was remarkable. Guangxiaspis guangxiensis shows marked morphological change during both meraspid and holaspid ontogeny and might include more than a single morphotype.

Type
Research Article
Copyright
Copyright © 2010, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradley, J. H. 1925. Trilobites of Beekmantown in the Phillipsburg region of Quebec. Canadian Field Naturalist, 39: 59.Google Scholar
Burmeister, H. 1843. Die Organisation der Trilobiten aus ihren lebenden Verwandten entwickelt; nebst einer systematischen Uebersicht aller zeither beschriebenen Arten. Reimer, Berlin, 147p.Google Scholar
Endo, R. 1937. Addenda to Part 1 and 2. Manchurian Science Museum Bulletin, 1: 302369, 435–461.Google Scholar
Fortey, R. A. 1990. Ontogeny, hypostome attachment and trilobite classification. Palaeontology, 33: 529576.Google Scholar
Fortey, R. A. 1997. Classification, p. 289302. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Part O, Trilobita (Revised). Geological Society of America, Boulder and University of Kansas Press, Lawrence.Google Scholar
Fortey, R. A. and Chatterton, B. D. E. 1988. Classification of the trilobite suborder Asaphina. Palaeontology, 31: 165222.Google Scholar
Fortey, R. A. and Owens, R. M. 1999. Feeding habits in trilobites. Palaeontology, 42: 429465.CrossRefGoogle Scholar
Nairen, Han and Guiying, C. 2004. Discovery of a complete Dictyella (Trilobite) carapace fossil in Guangxi and its significance. Acta Palaeontologica Sinica, 43: 416419.Google Scholar
Nairen, Han and Guiying, C. 2008. New stylophorans (Echinodermata) from the upper Cambrian of Guangxi, South China. Science in China Series D: Earth Sciences, 51: 181186.Google Scholar
Han, N., Tang, Lan, Wei, Renshan, and Wang, Guibin. 2000. Stratigraphy of Upper Cambrian from Guole, Jingxi, Guangxi. Journal of Guilin Institute of technology, 20: 350354.Google Scholar
Harrington, H. J. 1957. On some Ordovician fossils from northern Argentina. Geological Magazine, 74: 97124.CrossRefGoogle Scholar
Harrington, H. J. and Leanza, A. F. 1957. Ordovician trilobites of Argentina. Special Publications of the Department of Geology, University of Kansas, 1: 1276.Google Scholar
Henningsmoen, G. 1975. Moulting in trilobites. Fossils and Strata, 4: 179200.Google Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the Late Cambrian trilobite Dikelocephalus . Smithsonian Contributions to Paleobiology, 79: 189.CrossRefGoogle Scholar
Hughes, N. C., Minelli, A., and Fusco, G. 2006. The ontogeny of trilobite segmentation: a comparative approach. Paleobiology, 32: 602627.Google Scholar
Hupé, P. 1955. Classification des trilobites. Annales de Paléontologie, 41: 91325.Google Scholar
Jell, P. A. and Adrain, J. M. 2003. Available generic names for trilobites. Memoirs of the Queensland Museum, 48: 1552.Google Scholar
Jell, P. A. and Stait, B. 1985. Tremadoc trilobites from the Florentine Valley Formation, Tim Shea area, Tasmania. Memoirs of the Museum of Victoria, 46: 134.Google Scholar
Kobayashi, T. 1935. The Cambro-Ordovician Formations and Faunas of South Chosen. Journal of the Faculty of Science University of Tokyo, 4: 49344.Google Scholar
Lee, D.-C. and Chatterton, B. D. E. 2003. Protaspides of Leiostegium and their implications for membership of the order Corynexochida. Palaeontology, 46: 431445.Google Scholar
Yanhao, Lu, Zhang, Wentang, Zhu, Zhaoling, Qian, Yiyuan, and Xiang, Liwen. 1965. Trilobites of China. Science Press, Beijing, 766 p. (in Chinese)Google Scholar
Luo Huilin. 1983. New finds of trilobites from Late Cambrian in western Yunnan, p. 118. In Contribution to the geology of the Qinghai-Xizang (Tibet) Plateau. Science Press, Beijing.Google Scholar
Öpik, A. A. 1970. Redlichia of the Ordian (Cambrian) of Northern Australia and New South Wales. Bureau of Mineral Resources Geology & Geophysics Australia Bulletin, 11: 4166.Google Scholar
Park, T.-Y. and Choi, D. K. 2009. Post-embryonic development of the Furongian (late Cambrian) trilobite Tsinania canensis: implications for life mode and phylogeny. Evolution and Development, 11: 441455.Google Scholar
Peng, S., Babcock, L. E., and Cooper, A. In press. Chapter 18, Cambrian Period. In Gradstein, F., Ogg, J., and Smith, A. (ed.), A Geologic Time Scale 2010. Cambridge University Press, Cambridge.Google Scholar
Hongan, Qiu, Lu, Yanhao, Zhu, Zhaoling, Bi, Dechang, Lin, Tianrui, Zhou, Zhiyi, Zhang, Quanzhong, Qian, Yiyuan, Ju, Tianyin, Han, Nairen, and Wei, Xiuzhe. 1983. Trilobita, p. 28254. In Nanjing Institute of Geology and Mineral Resources (ed.), Palaeontological Atlas of East China, (1). Geological Publishing House, Beijing. (In Chinese) Google Scholar
Salter, J. W. 1864. A monograph of British trilobites. Part 1. Palaeontographical Society Monograph, 180.Google Scholar
Shergold, J. H. 1972. Late Upper Cambrian trilobites from the Gola Beds, western Queensland. Bureau of Mineral Resources of Australia, Bulletin, 112: 1127.Google Scholar
Shergold, J. H. 1975. Late Cambrian and Early Ordovician trilobites from the Burke River structural belt, western Queensland, Australia. Commonwealth of Australia, Bureau of Mineral Resources, Geology and Geophysics, Bulletin, 153: 1251.Google Scholar
Shergold, J. H. 1991. Late Cambrian and Early Ordovician trilobite faunas and biostratigraphy of the Pacoota Sandstone, Amadeus Basin, Central Australia. Bureau of Mineral Resources, Geology and Geophysics Bulletin, 237: 1576.Google Scholar
Speyer, S. E. and Brett, C. E. 1985. Clustered trilobite assemblages in the Middle Devonian Hamilton Group. Lethaia, 18: 85103.CrossRefGoogle Scholar
Sun, Yunzhu. 1924. Contributions to the Cambrian faunas of North China. Palaeontologia Sinica (series B), 1: 1109.Google Scholar
Sun, Yunzhu. 1935. The Upper Cambrian trilobite faunas of north China. Palaeontologia Sinica, series B, 7(2): 193.Google Scholar
Webster, M. 2007. Ontogeny and evolution of the Early Cambrian trilobite genus Nephrolenellus (Olenelloidea). Journal of Paleontology, 81: 11681193.Google Scholar
Webster, M., Hughes, N. C., and Gaines, R. R. 2007. Microstratigraphy, trilobite biostratinomy, and depositional environment of the “lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 264: 100122.Google Scholar
Whittington, H. B. 1997. Illaenidae (Trilobita): Morphology of the thorax, classification, and mode of life. Journal of Paleontology, 71: 878896.Google Scholar
Whittington, H. B. and Kelly, S. R. A., 1997. Morphological terms applied to Trilobita, p. 0313–329. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised, Volume 1. Geological Society of America, Boulder and University of Kansas Press, Lawrence.Google Scholar
Wentang, Zhang and Jell, P. A. 1987. Cambrian trilobites of North China: Chinese Cambrian trilobites housed in the Smithsonian Institution. Science Press, Beijing.Google Scholar
Tianmei, Zhou, Liu, Yiren, Meng, Xiansong, and Sun, Zhenhua. 1977. Class Trilobita, In Palaeontological atlas of Central and South China. 1, Early Palaeozoic. Geological Publishing House, Beijing. 104266. (in Chinese)Google Scholar
Xuejian, Zhu, Hughes, N. C. and Peng, Shanchi. 2007. On a new species of Shergoldia Zhang & Jell, 1987 (Trilobita), the family Tsinaniidae and the order Asaphida. Memoirs of the Association of Australasian Palaeontologists, 34: 243253.Google Scholar