Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T18:30:03.968Z Has data issue: false hasContentIssue false

Ontogenetic change in valve characters in three new species of Baffinicythere (Ostracoda, Crustacea) from Northern Japan

Published online by Cambridge University Press:  20 May 2016

Toshiaki Irizuki*
Affiliation:
Department of Earth Sciences, Aichi University of Education, Kariya 448, Japan

Abstract

The genus Baffinicythere is a northern high-latitude marine ostracode, which includes four species: B. howei Hazel, B. ishizakii new species, B. reticulata new species, B. robusticostata new species. The first species occurs only in late Pliocene to Recent sediments of the Arctic and northern Atlantic Oceans. The remaining three species are abundant in the Plio–Pleistocene formations of northern Japan, which yield cold-water molluscan faunas. Detailed morphological analyses and paleogeographic distribution of the three new species indicates that: 1) B. reticulata has some primitive characters relative to the other two species; 2) B. ishizakii and B. robusticostata seem to have had different strategies as regards rate of ontogenetic size increase; 3) the left valve outlines can be resolved into two components, ontogenetic shape changes and species-specific distinctions among the species; and 4) B. robusticostata invaded areas inhabited by B. reticulata and may have excluded it during the late Pleistocene. The Atlantic species B. howei has not been recorded from northern Japan. Comparisons of B. reticulata and B. howei, based on their pore distribution and reticulate sculptures, suggest that B. reticulata could have migrated to the Arctic Province after the Bering land barrier had been breached and then evolved rapidly into B. howei.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology, 5:296317.CrossRefGoogle Scholar
Benson, R. H. 1972. The Bradleya problem, with descriptions of two new psychrospheric ostracode genera, Agrenocythere and Poseidonamicus (Ostracoda: Crustacea). Smithsonian Contributions to Paleobiology, Number 12, 138 p.Google Scholar
Benson, R. H. 1975. Morphologic stability in Ostracoda. Bulletins of American Paleontology, 65(282):1346.Google Scholar
Benson, R. H. 1977. Evolution of Oblitacythereis from Paleocosta (Ostracoda: Trachyleberididae) during the Cenozoic in the Mediterranean and Atlantic. Smithsonian Contributions to Paleobiology, Number 33, 47 p.Google Scholar
Brady, G. S. 1866. On new or imperfectly known species of marine Ostracoda. Transactions of the Zoological Society of London, 5:359393.Google Scholar
Cronin, T. M. 1991. Late Neogene marine Ostracoda from Tjörnes, Iceland. Journal of Paleontology, 65:767794.CrossRefGoogle Scholar
Cronin, T. M., and Dowsett, H. J. 1990. A quantitative micropaleontologic method for shallow marine paleoclimatology: Application to Pliocene deposits of the western North Atlantic Ocean. Marine Micropaleontology, 16:117147.Google Scholar
Cronin, T. M., and Ikeya, N. 1987. The Omma-Manganji ostracod fauna (Plio-Pleistocene) of Japan and zoogeography of circumpolar species. Journal of Micropalaeontology, 6:6588.CrossRefGoogle Scholar
Cronin, T. M., Kitamura, A., Ikeya, N., Watanabe, M., and Kamiya, T. 1994. Late Pliocene climate change 3.4-2.3 Ma: Paleoceanographic record from the Yabuta Formation, Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 108:437455.CrossRefGoogle Scholar
Cronin, T. M., Whatley, R., Wood, A., Tsukagoshi, A., Ikeya, N., Brouwers, E. M., and Briggs, W. M. Jr. 1993. Microfaunal evidence for elevated Pliocene temperatures in the Arctic Ocean. Paleoceanography, 8:161173.CrossRefGoogle Scholar
Granlund, G. H. 1972. Fourier preprocessing for hand print character recognition. IEEE Transactions of Computers, C–21:195281.CrossRefGoogle Scholar
Hanai, T. 1970. Studies on the ostracod subfamily Schizocytherinae Mandelstam. Journal of Paleontology, 44:693729.Google Scholar
Hanai, T., and Ikeya, N. 1991. Two new genera from the Omma–Manganji Fauna (Plio–Pleistocene) of Japan—with a discussion of theoretical versus purely descriptive ostracode nomenclature. Transactions and Proceedings of the Palaeontological Society of Japan, New series, 163:861878.Google Scholar
Hanai, T., and Yamaguchi, T. 1987. Plio–Pleistocene ostracod fauna of Shimokita, Aomori Prefecture (preliminary report). Memoirs of the National Science Museum, Tokyo, 20:4551. (In Japanese with English summary)Google Scholar
Hartmann, G. 1992. Zur Kenntnis der rezenten und subfossilen Ostracoden des Liefdefjords (Nordspitzbergen, Svålbard). I. Teil. Mit. einer Tabelle subfossil nachgewiesener Foraminiferen. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 89:185225.Google Scholar
Hayashi, K. 1988. Plio-Pleistocene paleoenvironment and fossil ostracod fauna from Southwest Hokkaido, Japan, p. 557563. In Hanai, T., Ikeya, N., and Ishizaki, K. (eds.), Evolutionary Biology of Ostracoda—its fundamentals and applications. Kodansha Press, Tokyo, Elsevier, Amsterdam.Google Scholar
Hazel, J. E. 1967a. Classification and distribution of the Recent Hemicytheridae and Trachyleberididae (Ostracoda) off northeastern North America. U. S. Geological Survey Professional Paper 564, 49 p.Google Scholar
Hazel, J. E. 1967b. Corrections for Clasification and distribution of the Recent Hemicytheridae and Trachyleberididae (Ostracoda) off northeastern North America. Journal of Paleontology, 41:12841285.Google Scholar
Hazel, J. E. 1970. Atlantic continental shelf and slope of the United States—Ostracode zoogeography in the southern Nova Scotian and northern Virginian faunal provinces. U. S. Geological Survey Professional Paper 529-E:121.CrossRefGoogle Scholar
Horne, D. J., and Whittaker, J. E. 1983. On Baffinicythere howei Hazel, 1967. Stereo-Atlas of Ostracod Shells, 10(9):5362.Google Scholar
Ikeya, N., and Cronin, T. M. 1993: Quantitative analysis of Ostracoda and water masses around Japan: Application to Pliocene and Pleistocene paleoceanography. Micropaleontology, 39:263281.CrossRefGoogle Scholar
Ikeya, N., and Itoh, H. 1991. Recent Ostracoda from the Sendai Bay region, Pacific coast of northeastern Japan. Reports of Faculty of Science, Shizuoka University, 25:93145.Google Scholar
Ikeya, N., Zhou, B.-C., and Sakamoto, J. 1992. Modern ostracode fauna from Otsuchi Bay, the Pacific coast of northeastern Japan, p. 339354. In Ishizaki, K. and Saito, T. (eds.), Centenary of Japanese Micropaleontology, Contributed Papers in honor of Professor Y. Takayanagi. Terra Scientific Publishing Company, Tokyo.Google Scholar
Irizuki, T. 1989. Fossil ostracode assemblages from the Pliocene Sasaoka Formation, Akita City, Japan—with reference to sedimentological aspects. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 156:296318.Google Scholar
Irizuki, T. 1993. Morphology and taxonomy of some Japanese hemicytherin Ostracoda—with particular reference to ontogenetic changes of marginal pores. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 170:186211.Google Scholar
Irizuki, T. 1994a. Late Miocene ostracods from the Fujikotogawa Formation, northern Japan—with reference to cold water species involved with trans-Arctic interchange. Journal of Micropalaeontology, 13:315.Google Scholar
Irizuki, T. 1994b. Quantitative analysis of ontogenetic changes of cell-reflecting sculptures in Ostracoda. Journal of Paleontology, 68:10671073.CrossRefGoogle Scholar
Irizuki, T., and Sasaki, O. 1993. Analysis of morphological changes through ontogeny: genera Baffinicythere and Elofsonella (Hemicytherinae), p. 335350. In McKenzie, K. G. and Jones, P. J. (eds.), Ostracoda in the Earth and Life Sciences. A. A. Balkema, Rotterdam.Google Scholar
Ishizaki, K., and Matoba, Y. 1985. Excursion 5: Akita (Early Pleistocene cold, shallow water Ostracoda), 12 p. In Guidebook of Excursions, 9th International Symposium on Ostracoda, July 29–August 2, 1985, Shizuoka Japan.Google Scholar
Kamiya, T. 1989. Differences between the sensory organs of phytal and bottom-dwelling Loxoconcha (Ostracoda, Crustacea). Journal of Micropalaeontology, 8:3747.Google Scholar
Liebau, A. 1969. Homologisierende Korrelationen von Trachyleberididen-Ornamenten (Ostracoda, Cytheracea). Neues Jahrbuch für Geologie und Paläontologie, 7:390402.Google Scholar
Liebau, A. 1977. Homologous sculpture patterns in Trachyleberididae and related ostracods, p. 193. (Homologe Skulpturmuster bei Trachyleberididen und verwandten Ostracoden, 1971)Translated and published for the Smithsonian Institution and the National Science Foundation, Washington, D. C., by the Nalit Publishing House, Belgrade.Google Scholar
Liebau, A. 1991. Skulptur-Evolution bei Ostrakoden am Beispiel europäischer “Quadracytheren”. Geologie und Paläontologie in Westfalen, 13:1395.Google Scholar
McCoy, F. 1844. A synopsis of the characters of the Carboniferous fossils of Ireland. Dublin University Press, 207 p.Google Scholar
McKinney, M. L. 1984. Allometry and heterochrony in an Eocene echinoid lineage: morphological changes as a by-product of size selection. Paleobiology, 10:407419.Google Scholar
McNamara, K. J. 1986. A guide to the nomenclature of heterochrony. Journal of Paleontology, 60:413.Google Scholar
Neale, J. W., and Howe, H. V. 1975. The marine Ostracoda of Russian Harbour, Novaya Zemlya and other high latitude faunas. Bulletins of American Paleontology, 65(282):381431.Google Scholar
Nishimura, S. 1981. Sea and Life of the Earth: an introduction of marine biogeography. Kaimei-sha, Tokyo, 284 p. (in Japanese)Google Scholar
Ogasawara, K. 1994. Neogene paleogeography and marine climate of the Japanese Islands based on shallow-marine molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology, 108:335351.Google Scholar
Ogasawara, K., Oda, M., and Horikoshi, E. 1986a. Route No. 13, 16 p. In Kitamura, N. (ed.), Collected Geological Data on the Cenozoic of Northeast Honshu, Japan 2(1). Sendai, Hobundo Company. (In Japanese)Google Scholar
Ogasawara, K., Oda, M., and Horikoshi, E. 1986b. Route No. 14, 21 p. In Kitamura, N. (ed.), Collected Geological Data on the Cenozoic of Northeast Honshu, Japan 2(2). Sendai, Hobundo Company. (In Japanese)Google Scholar
Okada, Y. 1979. Stratigraphy and Ostracoda from the Late Cenozoic strata of the Oga Peninsula, Akita Prefecture. Transactions and Proceedings of the Palaeontological Society of Japan, New series, 115:143173.Google Scholar
Okada, Y. 1981. Development of cell arrangement in ostracod carapaces. Paleobiology, 7:276280.Google Scholar
Okada, Y. 1982. Structure and cuticle formation of the reticulated carapace of the ostracode Bicornucythere bisanensis. Lethaia, 15:85101.CrossRefGoogle Scholar
Otuka, Y. 1939. Tertiary crustal deformation in Japan (with short remarks on Tertiary paleogeography), p. 481519. Jubilee publication in the commemoration of Professor H. Yabe, M. I. A. sixtieth birthday 1, Commemorative Association of Professor H. Yabe's Sixtieth Birthday, Sendai.Google Scholar
Persoon, E., and Fu, K. S. 1977. Shape discrimination using Fourier descriptors. IEEE Transactions of Computers, SMC-7:170179.CrossRefGoogle Scholar
Plusquellec, P. L., and Sandberg, P. A. 1969. Some genera of the ostracode subfamily Campylocytherinae. Micropaleontology, 15:427480.Google Scholar
Puri, H. S. 1953. The ostracode genus Hemicythere and its allies. Journal of the Washington Academy of Sciences, 43:169179.Google Scholar
Rosenfeld, A. 1982. Distribution patterns and development of sievepores in two Recent ostracode species. Micropaleontology. 28:372380.Google Scholar
Sars, G. O. 1865. Oversigt of Norges marine ostracoder. Forhandlinger Videnskab Selskabet, I, Christiania, 7:1130.Google Scholar
Sars, G. O. 1925. An account of the Crustacea of Norway. Bergen Museum, Oslo, 9:1277.Google Scholar
Sasaki, O. 1991. Discrimination of two new Anadara species using shell growth parameters and Fourier Descriptors. Transactions and Proceedings of the Palaeontological Society of Japan, New series, 161:697713.Google Scholar
Schornikov, E. I. 1974. On the study of Ostracoda (Crustacea) from the intertidal zone of the Kuril Islands. Academy of Science USSR, Far-eastern Scientific Center, Institute of Marine Biology, Collected Works, number 1, p. 137214. (in Russian with English abstract)Google Scholar
Schweitzer, P. N., Kaesler, R. L., and Lohmann, G. P. 1986. Ontogeny and heterochrony in the ostracode Cavellina Coryell from Lower Permian rocks in Kansas. Paleobiology, 12:290301.Google Scholar
Schweitzer, P. N., and Lohmann, G. P. 1990. Life-history and evolution of ontogeny in the ostracode genus Cyprideis. Paleobiology, 16:107125.CrossRefGoogle Scholar
Siddiqui, Q. A., and Grigg, U. M. 1975. A preliminary survey of the ostracodes of Halifax Inlet. Bulletins of American Paleontology, 65(282):369379.Google Scholar
Tabuki, R. 1986. Plio—Pleistocene Ostracoda from the Tsugaru Basin, North Honshu, Japan. Bulletin of College of Education, University of the Ryukyus, 29, Part 2:27160.Google Scholar
Tsukagoshi, A. 1990. Ontogenetic changes of distributional patterns of pore systems in Cythere species and its phylogenetic significance. Lethaia, 23:225241.Google Scholar
Tsukawaki, S., Nemoto, N., Maruyama, T., Shimamoto, M., Sasaki, O., Motoyama, I., Irizuki, T., Kato, H., Chatterjee, D., Fujimoto, E., and Hasegawa, S. 1993. Preliminary results from the R. V. Tanseimaru Cruise KT92-13 (Leg 2) in the eastern marginal area of the Japan Sea. Science Reports of the Hirosaki University, 40(1):6199.Google Scholar