Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T20:12:33.103Z Has data issue: false hasContentIssue false

A microanatomical and histological study of the paired fin skeleton of the Devonian sarcopterygian Eusthenopteron foordi

Published online by Cambridge University Press:  14 July 2015

Michel Laurin
Affiliation:
FRE 2696, Evolution et Adaptation des Systèmes Ostéomusculaires, Université Paris 6-P. et M. Curie, 2, place Jussieu, 75005 Paris
François J. Meunier
Affiliation:
FRE 2696, Evolution et Adaptation des Systèmes Ostéomusculaires, Université Paris 6-P. et M. Curie, 2, place Jussieu, 75005 Paris UMS 0403, Biodiversité et Dynamique des Communautés aquatiques, Département des Milieux et Peuplements aquatiques, Muséum national d'Histoire naturelle, 43 rue Cuvier, 75231 Paris cedex 05, France
Damien Germain
Affiliation:
FRE 2696, Evolution et Adaptation des Systèmes Ostéomusculaires, Université Paris 6-P. et M. Curie, 2, place Jussieu, 75005 Paris
Michel Lemoine
Affiliation:
Département Histoire de la Terre, Bâtiment Paléontologie, UMR CNRS 5143, MNHN, 8, rue Buffon, 75005 Paris

Abstract

Sections of fore- and hindlimbs of a Paleozoic sarcopterygian (Eusthenopteron foordi from the Devonian) possess a thin cortical compacta and an extensive and relatively loose medullary spongiosa. Most long bones have no free medullary cavity. the smallest bones appear to have a proportionately thicker cortical compacta (although the trend is not statistically significant) and a free medullary cavity. the morphological synapomorphies of panderichthyids and stegocephalians that could be interpreted as suggesting a life in shallow water and possibly occasional excursions on dry land are absent in E. foordi. Thus, recent data on sarcopterygian morphology are congruent with recent paleoecological interpretations that E. foordi lived in a marginal marine or estuarine environment and had an aquatic lifestyle.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P. E. 1989. Four legs to stand on for Devonian vertebrates. Nature, 342:738.Google Scholar
Ahlberg, P. E. 1995. Elginerpeton pancheni and the earliest tetrapod clade. Nature, 373:420425.CrossRefGoogle Scholar
Ahlberg, P. E., Luksevics, E., and Lebedev, O. 1994. The first tetrapod finds from the Devonian (Upper Famennian) of Latvia. Philosophical Transactions of the Royal Society, B, 343:303328.Google Scholar
Andrews, S. M., and Westoll, T. S. 1970. The postcranial skeleton of Eusthenopteron foordi Whiteaves. Transactions of the Royal Society of Edinburgh, 68:207329.Google Scholar
Arratia, G., and Cloutier, R. 2004. A new cheirolepidid fish from the Middle-Upper Devonian of Red Hill, Nevada, USA, p. 383598. In Arratia, G., Wilson, M. V. H., and Cloutier, R. (eds.), Recent Advances in the Origin and Early Radiations of Vertebrates. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Barrell, J. 1916. Influence of Silurian–Devonian climates on the rise of air-breathing vertebrates. Geological Society of America Bulletin, 27:387436.Google Scholar
Bray, A. A. 1985. The evolution of the terrestrial vertebrates: Environmental and physiological considerations. Philosophical Transactions of the Royal Society, B, 309:289322.Google Scholar
Buffrénil, V. de, and Schoevaert, D. 1989. Données quantitatives et observations histologiques sur la pachyostose du squelette du dugong, Dugong dugon (Müller) (Sirenia, Dugongidae). Canadian Journal of Zoology, 67:21072119.Google Scholar
Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. W. H. Freeman, New York, 698 p.Google Scholar
Carroll, R. L., Irwin, J., and Green, D. M. 2005. Thermal physiology and the origin of terrestriality in vertebrates. Zoological Journal of Linnean Society, 143:345358.Google Scholar
Castanet, J., and Caetano, M. H. 1995. Influence du mode de vie sur les caractéristiques pondérales et structurales du squelette chez les amphibiens anoures. Canadian Journal of Zoology, 73:234242.Google Scholar
Castanet, J., Curry Rogers, K., Cubo, J., and Boisard, J.-J. 2000. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. Comptes Rendus de l'Académie des Sciences de Paris, Sciences de la vie/Life sciences, 323:543550.Google Scholar
Castelnau, F. de. 1876. Mémoire sur les poissons appelés Barramundi par les aborigènes du nord-est de l'Australie. Journal de Zoologie, 5:129436.Google Scholar
Chidiac, Y. 1996. Paleoenvironmental interpretation of the Escuminac Formation based on geochemical evidence, p. 4753. In Schultze, H.-P. and Cloutier, R. (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada. Dr. Fr. Pfeil, München.Google Scholar
Clack, J. A. 2002. Gaining Ground: The Origin and Evolution of Tetrapods. Indiana University Press, Bloomington, 369 p.Google Scholar
Clack, J. A., Ahlberg, P. E., Finney, S. M., Alonso, D. P., Robinson, J. D., and Ketcham, R. A. 2003. A uniquely specialized ear in a very early tetrapod. Nature, 425:6569.Google Scholar
Cloutier, R., Loboziak, S., Candilier, A.-M., and Blieck, A. 1996. Biostratigraphy of the Upper Devonian Escuminac Formation, eastern Québec, Canada: A comparative study based on miospores and fishes. Review of Palaeobotany and Palynology, 93:191215.Google Scholar
Coates, M. I. 1996. The Devonian tetrapod Acanthostega gunnari Jarvik: Postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution. Transactions of the Royal Society of Edinburgh, 87:363421.CrossRefGoogle Scholar
Coates, M. I., and Clack, J. A. 1991. Fish-like gills and breathing in the earliest known tetrapod. Nature, 352:234236.Google Scholar
Coates, M. I., and Clack, J. A. 1995. Romer's gap: Tetrapod origins and terrestriality. Bulletin du Muséum national d'Histoire naturelle de Paris, 4ème série, 17:373388.Google Scholar
Cote, S., Carroll, R., Cloutier, R., and Bar-Sach, L. 2002. Vertebral development in the Devonian sarcopterygian fish Eusthenopteron foordi and the polarity of vertebral evolution in non-amniote tetrapods. Journal of Vertebrate Paleontology, 22:487502.Google Scholar
Daeschler, E. B., Shubin, N. H., Thomson, K. S., and Amaral, W. W. 1994. A Devonian tetrapod from North America. Science, 265:639642.Google Scholar
Dean, B. 1906. Notes on the living specimens of the Australian lungfish, Ceratodus forsteri, in the Zoological Society's collection. Proceedings of the Zoological Society of London, 1906:168178.Google Scholar
Dott, R. H. Jr., and Batten, R. L. 1988. Evolution of the Earth. McGraw-Hill, New York, 643 p.Google Scholar
Fish, F. E., and Stein, B. R. 1991. Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia). Zoomorphology, 110:339345.Google Scholar
Fitzinger, L. J. 1837. Über Lepidosiren . Archiv für Naturgeschichte, 2:232.Google Scholar
Francillon, H., Meunier, F., Phong, N. T., and de Ricqlès, A. 1973. Tissus osseux et cartilage. Problèmes actuels de Paléontologie (Evolution des vertébrés), CNRS-Colloques internationaux, Paris, p. 169174.Google Scholar
Francillon-Vieillot, H., Buffrénil, V. D., Castanet, J., Géraudie, J., and Meunier, F. J. 1990. Microstructure and mineralization of vertebrate skeletal tissues, p. 471530. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Volume 1. Van Nostrand Reinhold, New York.Google Scholar
Fricke, H. W. 1993. Der Quastenflosser: Biologie eines legendaren Fisches. Biologie in unserer Zeit, 23:229237.Google Scholar
Girondot, M., and Laurin, M. 2003. Bone Profiler: A tool to quantify, model and statistically compare bone section compactness profiles. Journal of Vertebrate Paleontology, 23:458461.Google Scholar
Goodrich, E. S. 1930. Studies on the Structure and Development of Vertebrates. Macmillan, London, 837 p.Google Scholar
Graham, J. B. 1997. Air-Breathing Fishes—Evolution, Diversity and Adaptation. Academic Press, London, 299 p.Google Scholar
Greenwood, P. H. 1986. The natural history of African lungfishes, p. 163180. In Bemis, W. E., Burggren, W. W., and Kemp, N. E. (eds.), The Biology and Evolution of Lungfishes. Alan R. Liss, New York.Google Scholar
Gross, W. 1941. Über den Unterkiefer einiger devonischer Crossopterygier. Abhandlungen der Preußischen Akademie der Wissenschaften, 1941:151.Google Scholar
Günther, A. 1871. Description of Ceratodus, a genus of ganoid fishes, recently discovered in rivers of Queensland. Philosophical Transactions of the Royal Society of London, 161:511567.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, G. D. 1990. A Geologic Time Scale 1989. Cambridge University Press, Cambridge, 263 p.Google Scholar
Inger, R. F. 1957. Ecological aspects of the origins of the tetrapods. Evolution, 11:373376.CrossRefGoogle Scholar
Janis, C. M., and Farmer, C. 1999. Proposed habitats of early tetrapods: Gills, kidneys, and the water-land tradition. Zoological Journal of the Linnean Society, 126:117126.Google Scholar
Jarvik, E. 1952. On the fish-like tail in the ichthyostegid stegocephalians with descriptions of a new stegocephalian and a new crossopterygian from the Upper Devonian of East Greenland. Meddelelser om Grønland, 114:190.Google Scholar
Jarvik, E. 1963. The composition of the intermandibular division of the head in fish and tetrapods and the diphyletic origin of the tetrapod tongue. Kunglia Svenska Vetenskapakademiens Handlingar (4), 9:174.Google Scholar
Jarvik, E. 1980. Basic Structure and Evolution of Vertebrates. Academic Press, London, 1, 575 p.Google Scholar
Jarvik, E. 1986. The origin of the Amphibia, p. 124. In Rocek, Z. (ed.), Studies in Herpetology. Charles University, Prague.Google Scholar
Kemp, A. 1986. The biology of the Australian lungfish, Neoceratodus fosteri (Krefft, 1870), p. 181198. In Bemis, W. E., Burggren, W. W., and Kemp, N. E. (eds.), The Biology and Evolution of Lungfishes. Alan R. Liss, New York.Google Scholar
Krynine, P. D. 1948. The origin of red beds. Transactions of the New York Academy of Sciences, series II, 11:6068.CrossRefGoogle Scholar
Laurin, M. 1998. The importance of global parsimony and historical bias in understanding tetrapod evolution, P. I, Systematics, middle ear evolution, and jaw suspension. Annales des Sciences Naturelles, Zoologie, Paris, 13e série, 19:142.Google Scholar
Laurin, M. 2004. The evolution of body size, Cope's rule and the origin of amniotes. Systematic Biology, 53:594622.Google Scholar
Laurin, M., Girondot, M., and Loth, M.-M. 2004. The evolution of long bone microanatomy and lifestyle in lissamphibians. Paleobiology, 30:589613.Google Scholar
Leclair, R. Jr., Lamontagne, C., and Aubin, A. 1993. Allométrie de la masse du squelette chez des amphibiens anoures. Canadian Journal of Zoology, 71:352357.Google Scholar
Linnaeus, C. 1758. Systema Naturae. Stockholm, 824 p.Google Scholar
Lull, R. S. 1918. The pulse of life, p. 109146. In Barrell, J., Schuchert, C., Woodruff, L. L., Lull, R. S., and Huntington, W. (eds.), The Evolution of the Earth and Its Inhabitants. Yale University Press, New Haven, Connecticut.Google Scholar
Lydekker, R. 1890. On two new species of Labyrinthodonts. Quarterly Journal of the Geological Society of London, 46:289294.Google Scholar
Murphy, M. A., Morgan, T. G., and Dineley, D. L. 1976. Astrolepis sp. from the Upper Devonian of central Nevada. Journal of Paleontology, 50:467471.Google Scholar
Ørvig, T. 1957. Remarks on the vertebrate fauna of the Lower Upper Devonian of Escuminac Bay, P.Q., Canada, with special reference to the Porolepiform Crossopterygians. Arkiv för Zoologie, 10:367426.Google Scholar
Owen, R. 1839. A new species of the genus Lepidosiren . Proceedings of the Linnean Society of London, 1:2732.Google Scholar
Parent, N., and Cloutier, R. 1996. Distribution and preservation of fossils in the Escuminac Formation, p. 5478. In Schultze, H.-P. and Cloutier, R. (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada. Dr. Friedrich Pfeil, München.Google Scholar
Pridmore, P. A. 1995. Submerged walking in the epaulette shark Hemiscyllium ocellatum (Hemiscyllidae) and its implications for locomotion in rhipidistian fishes and early tetrapods. Zoology—Analysis of Complex Systems, 98:278297.Google Scholar
Rackoff, J. S. 1980. The origin of the tetrapod limb and the ancestry of tetrapods, p. 255292. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, New York.Google Scholar
Reed, J. W. 1985. Devonian dipnoans from Red Hill, Nevada. Journal of Paleontology, 59:11811193.Google Scholar
Reed, J. W. 1986. The acanthodian genera Machaeracanthus and Persacanthus from the Devonian of Red Hill, Nevada. Geobios, 19:409419.Google Scholar
Reed, J. W. 1992. The actinopterygian Cheirolepis from the Devonian of Red Hill, Nevada, and its implications for acanthodian-actinopterygian relationships, p. 243250. In Mark-Kurik, E. (ed.), Fossil Fishes as Living Animals. Volume 1. Academy of Sciences of Estonia, Tallinn.Google Scholar
Renous, S., Gasc, J.-P., Bels, V. L., and Davenport, J. 2000. Six-legged walking by a bottom-dwelling fish. Journal of the Marine Biological Association of the United Kingdom, 80:757758.Google Scholar
Ricqlès, A. de 1977. Recherches paléohistologiques sur les os longs des tétrapodes VII.—Sur la classification, la signification fonctionnelle et l'histoire des tissus osseux des tétrapodes. Deuxième partie, suite. Annales de Paléontologie, 63:3356.Google Scholar
Ricqlès, A. de 1981. Recherches paléohistologiques sur les os longs des tétrapodes. VI.—Stégocéphales. Annales de Paléontologie, 67:141160.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology. University of Chicago Press, 468 p.Google Scholar
Romer, A. S. 1969. A temnospondylous labyrinthodont from the Lower Carboniferous. Kirtlandia, 6:120.Google Scholar
Säve-Söderbergh, G. 1932. Preliminary note on Devonian stegocephalians from East Greenland. Meddelelser om Grønland, 94:1105.Google Scholar
Schmitz, B., Aberg, G., Werdelin, L., Forey, P. L., and Bendix-Almgreen, S. E. 1991. 87Sr/86Sr, Na, F, Sr, and La in skeletal fish debris as a measure of the paleosalinity of fossil-fish habitats. Geological Society of America Bulletin, 103:786794.Google Scholar
Schultze, H.-P. 1969. Die Faltenzähne der rhipidistiiden Crossopterygier, der Tetrapoden und der Actinopterygier-Gattung Lepisosteus, nebst einer Beschreibung der Zahnstruktur von Onychodus (struniiformer Crossopterygier). Palaeontographica Italica, 65:63137.Google Scholar
Schultze, H.-P. 1972. New fossils from the lower Upper Devonian of Miguasha. Vertebrate Paleontology of eastern Canada. International Geology Congress 24th session, Montreal, 59:94.Google Scholar
Schultze, H.-P. 1984. Juvenile specimens of Eusthenopteron foordi Whiteaves, 1881 (Osteolepiform Rhipidistian, Pisces) from the Late Devonian of Miguasha, Quebec, Canada. Journal of Vertebrate Paleontology, 4:116.Google Scholar
Schultze, H.-P. 1993. Osteichthyes: Sarcopterygii, p. 657663. In Benton, M. J. (ed.), The Fossil Record., 2. Chapman & Hall, London.Google Scholar
Schultze, H.-P. 1996. The elpistostegid fish Elpistostege, the closest the Miguasha fauna comes to a tetrapod, p. 316327. In Schultze, H.-P. and Cloutier, R. (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Schultze, H.-P. 1997. Umweltbedingungen beim Übergang von Fisch zu Tetrapode. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, 36:5977.Google Scholar
Schultze, H.-P., and Arsenault, M. 1985. The panderichthyid fish Elpistostege: A close relative of tetrapods? Palaeontology, 28:293309.Google Scholar
Schultze, H.-P., and Cloutier, R. 1996. Comparison of the Escuminac Formation ichthyofauna with other late Givetian/early Frasnian ichthyofaunas, p. 348368. In Schultze, H.-P. and Cloutier, R. (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Temminck, C. J. 1836. Coup d'Oeil sur la Faune des Îles de la Sonde et de l'Empire du Japon. Leiden, 26 p.Google Scholar
Thomson, K. S. 1972. New evidence on the evolution of the paired fins of Rhipidistia and the origin of the tetrapod limb, with description of a new genus of Osteolepididae. Postilla, 157:17.Google Scholar
Thomson, K. S. 1975. On the biology of cosmine. Bulletin of the Yale Peabody Museum of Natural History, 40:162.Google Scholar
Thomson, K. S. 1980. The ecology of Devonian lobe-finned fishes, p. 187222. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, London.Google Scholar
Tinsley, R. C., Kobel, H. R., and Fischberg, M. 1979. The biology and systematics of a new species of Xenopus (Anura: Pipidae) from the highlands of Central Africa. Journal of Zoology (London), 188:69102.Google Scholar
Vézina, D. 1991. Nouvelles observations sur l'environnement sédimentaire de la Formation d'Escuminac (Dévonien supérieur, Frasnien) Québec, Canada. Canadian Journal of Earth Sciences, 28:25230.Google Scholar
Vorobyeva, E. I. 2003. A new approach to the problem of tetrapod origin. Paleontological Journal, 37:449460.Google Scholar
Vorobyeva, E., and Hinchliffe, R. 1996. From fins to limbs. Developmental perspectives on paleontological and morphological evidence, p. 263311. In Hecht, M. K., Wallace, B., and Prance, G. T. (eds.), Evolutionary Biology, 29. Plenum Press, New York.Google Scholar
Vorobyeva, E., and Kuznetsov, A. 1992. The locomotor apparatus of Panderichthys rhombolepis (Gross), a supplement to the problem of fish-tetrapod transition, p. 131140. In Mark-Kurik, E. (ed.), Fossil Fishes as Living Animals. Academy of Sciences of Estonia, Tallinn.Google Scholar
Vorobyeva, E., and Schultze, H.-P. 1991. Description and systematics of panderichthyid fishes with comments on their relationship to tetrapods, p. 68109. In Schultze, H.-P. and Trueb, L. (eds.), Origins of the Higher Groups of Tetrapods—Controversy and Consensus. Cornell University Press, Ithaca, New York.Google Scholar
Wall, W. P. 1983. The correlation between high limb-bone density and aquatic habits in recent mammals. Journal of Paleontology, 57:197207.Google Scholar
Westoll, T. S. 1938. Ancestry of the tetrapods. Nature, 141:127128.Google Scholar
Whiteaves, J. F. 1881. On some remarkable fossil fishes from the Devonian rocks of Scaumenac Bay, P. Q., with descriptions of a new genus and three new species. The Canadian Naturalist (n. s.), 10:2735.Google Scholar
Wiegmann, A. F. A. 1835. Beiträge zur Zoologie, gesammelt auf einer Reise um die Erde, von Dr. F. J. F. Meyen. Siebente Abhandlung. Amphibien. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum, 17:183268.Google Scholar
Zhu, M., and Schultze, H.-P. 1997. The oldest sarcopterygian fish. Lethaia, 30:293304.Google Scholar