Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T17:37:54.859Z Has data issue: false hasContentIssue false

Earliest Cretaceous initial spicule-bearing spherical radiolarians from the Mariana Trench

Published online by Cambridge University Press:  14 July 2015

Rui Qing Li
Affiliation:
1Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan,
Katsuo Sashida
Affiliation:
1Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan, 2
Yujiro Ogawa
Affiliation:
1Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan, 3

Abstract

A tuffaceous claystone sample collected from a seamount flank of the Mariana Trench's ocean-ward slope by the Japanese submersible “Shinkai 6500” yielded very well-preserved earliest Cretaceous radiolarians. Initial spicule-bearing spherical radiolarians assignable to the families Centrocubidae and probably Entactiniidae have been identified in this radiolarian fauna. Based on the initial spicule and the connecting arches, we describe one new genus, Marianasphaera, belonging to the family Centrocubidae and another new genus called Shinkaiera, which is questionably assigned to the family Entactiniidae. Three new species, Marianasphaera ogawai, M. multispinosa, and Shinkaiera fragilis, are also described. These radiolarians provide important data, filling the gap between Triassic and Cenozoic initial spicule-bearing spherical radiolarians.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bragina, L. G. 1999. Cuboctostylus n. gen., a new Late Cretaceous spicule-bearing spumellarian Radiolaria from southern Sakhalin (Russia). Geodiversitas, 21:571580.Google Scholar
De Wever, P., Dumitrica, P., Caulet, J. P., Nigrini, C., and Caridroit, M. 2001. Radiolarians in the Sedimentary Record. Gordon and Breach Science Publishers, 533 p.Google Scholar
Dumitrica, P. 1978. Triassic Palaeoscenidiidae and Entactiniidae from the Vicentinian Alps (Italy) and eastern Carpathians (Romania). Dari de seama ale sedintelor, Institutul de Geologie si Geofizica, 64:3959.Google Scholar
Dumitrica, P., Kozur, H., and Mostler, H. 1980. Contribution to the radiolarian fauna of the Middle Triassic of the Southern Alps. Geologisch-Paläontologische Mitteilungen Innsbruck, 10:146.Google Scholar
Dumitrica, P. 1983. Evolution of Mesozoic and Cenozoic Centrocubidae (Radiolaria). Revue de Micropaléontologie, 25:221230.Google Scholar
Dumitrica, P. 1994. Pyloctostylus n. gen., a Cretaceous spumellarian radiolarian genus with initial spicule. Revue de Micropaléontologie, 37:235244.Google Scholar
Dumitrica, P. and Carter, E. S. 1999. Family Kungalariidae, n. fam., new Mesozoic entactinarian Radiolaria with a nassellarian-type initial spicule. Micropaleontology, 45:418428.Google Scholar
Dumitrica, P. and Zügel, P. 2000. Lower Tithonian entactinarian Radiolaria from the Solnhofen area (southern Franconian Alb, southern Germany). Ninth Meeting INTERRAD 2000, Program with Abstracts: 28, Reno, Nevada/Blairsden, California.Google Scholar
Dumitrica, P. 2001. On the status of the radiolarian genera Gonosphaera Jörgensen and Excentroconcha Mast. Revue de Micropaléontologie, 44:191198.Google Scholar
Ehrenberg, C. G. 1838. Uber die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Königliche Akademie der Wissenschaften zur Berlin, Abhandlungen. Jahre, 1838:59147.Google Scholar
Ehrenberg, C. G. 1875. Fortsetzung der mikrogeologischen Studien als Gesammt-Uebersicht der mikroskopischen Paläontologie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rücksicht auf den Polycystinen-Mergel von Barbados. Königliche Akademie der Wissenschaften zu Berlin, Abhandlungen. Jahre, 1875:1225.Google Scholar
Friend, J. K. and Riedel, W. R. 1967. Cenozoic orosphaerid radiolarians from tropical Pacific sediments. Micropaleontology, 13:217232.CrossRefGoogle Scholar
Haeckel, E. 1887. Report on the Radiolaria collected by H.M.S. Challenger during the years 1873-1876. Report on the Scientific Results of the Voyage of the H.M.S. Challenger. Zoology, 18, 1803 p.Google Scholar
Hollande, A. and Enjumet, M. 1960. Cytologie, évolution et systématique des Sphaeroïdés (Radiolaires). Archives du Museum national d'histoire naturelle, Paris, 7, 134 p.Google Scholar
Kozur, H. and Mostler, H. 1982. Entactinaria subordo Nov., a new radiolarian suborder. Geologisch-Paläontologische Mitteilungen Innsbruck, 11:399414.Google Scholar
Mast, H. 1910. Die Astrosphaeriden. Wiss. Ergeben. Deutschen Tiefsee-Exped. A. d. Dampfer “Valdivia” 1898-1899, 19:125190.Google Scholar
Matsuoka, A. 1995. Jurassic and Lower Cretaceous radiolarian zonation in Japan and in the western Pacific. Island Arc, 4:140153.CrossRefGoogle Scholar
Matsuoka, A. 1998. Faunal composition of earliest Cretaceous (Berriasian) radiolarian from the Mariana Trench in the western Pacific. News of Osaka Micropaleontologists, Special Volume, 11:165187.Google Scholar
Müller, J. 1858. Uber die Thalassicollen, Polycystinen und Acanthometren des Mittelmeeres. Königliche Preussische Akademie der Wissenschaften zur Berlin, Abhandlungen. Jahre, 1858:162.Google Scholar
Nakanishi, M. 1993. Topographic expression of five fracture zones in the northwestern Pacific Ocean. Geophysical Monograph, 77:121136.Google Scholar
Ogawa, Y., Fujioka, K., Oshida, A., Nishimura, H., Kawata, T., Matsuoka, A., Sashida, K., Kanamatsu, T., and Ito, T. 1994. Pacific Plate Jurassic to Cretaceous Seamount and Chert Stratigraphy, Rock Paleomagnetism and Clayey Seabottom Cracks—Preliminary Report of “Shinkai 6500” Dive 181 at the Mariana Trench Oceanward Slope. JAMSTEC J. Deep Sea Research, 10:123151. (In Japanese).Google Scholar
Ogawa, Y., Sashida, K., and Kawata, T. 1996. Silica mineralization of Jurassic/Cretaceous radiolarian cherts and claystone from a seamount flank at the Mariana trench oceanward slope. Science Reports of the Institute of Geoscience, University of Tsukuba, section B, 17:124.Google Scholar
Ogawa, Y. and Kawata, T. 1998. Preservation of biogenic opal-A in earliest Cretaceous Radiolarian claystone from the Western Pacific. Journal of Sedimentary Research, 68:435439.Google Scholar
Renz, G. W. 1974. Radiolaria from Leg 27 of the Deep Sea Drilling Project. In: Veevers, J. J., Heirtzler, J. R. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 27:769841.Google Scholar
Riedel, W. R. 1967. Some new families of Radiolaria. Proceedings of the Geological Society of London, 1640:148149.Google Scholar
Sissingh, C. C. 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. Geology of Mijinbouw, 56:3750.Google Scholar
Yeh, K. Y. 1995. Fenestrula, n. gen., lower Jurassic internal spiculebearing spherical radiolarians from east-central Oregon. Bulletin of the National Museum of Natural Science, 6:91105.Google Scholar