Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T06:20:01.575Z Has data issue: false hasContentIssue false

The complex morphology of a new Lower Silurian asteroid (Echinodermata)

Published online by Cambridge University Press:  20 May 2016

Daniel B. Blake
Affiliation:
Department of Geology, University of Illinois, Urbana 61801,
Frank R. Ettensohn
Affiliation:
Department of Earth & Environmental Sciences, University of Kentucky, Lexington 40506,

Abstract

Gordonaster brassfieldensis is a new genus and species of Asteroidea (Echinodermata) described from the Lower Silurian Brassfield Formation of east-central Kentucky. Tentatively assigned to the poorly understood Palaeasteridae, Gordonaster shares much with Ordovician asteroids, yet it also exhibits apparent homoplasies that presage the post-Paleozoic crown group. Available specimens also indicate that the ontogenetic pattern of ossicular addition seen in the crown group was established during the Paleozoic.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berry, W. B. N. and Boucot, A. J. 1970. Correlation of North American Silurian Rocks. Geological Society of America Special Paper 102, 289 p.Google Scholar
Bellings, E. 1858. On the Asteridae of the Lower Silurian rocks of Canada. Figures and descriptions of Canadian organic remains, Geological Survey of Canada, dec. 3:7585.Google Scholar
Blainville, H. M. De. 1830. Zoophytes. Dictionaries des Sciences Naturelles. F. G. Larval, Strasbourg, 60 p.Google Scholar
Blake, D. B. 1983. Some biological controls on the distribution of shallow-water sea-stars. Bulletin of Marine Science, 33:703712.Google Scholar
Blake, D. B. 1990. Paleobiological implications of some Upper Ordovician juvenile sea stars. Lethaia, 23:347357.CrossRefGoogle Scholar
Blake, D. B. 2007. Two Late Ordovician asteroids (Echinodermata) with characters suggestive of early ophiuroids. Journal of Paleontology, 81:14761485.CrossRefGoogle Scholar
Blake, D. B. 2008. A new Ordovician asteroid (Echinodermata) with somasteroid-like skeletal elements. Journal of Paleontology, 82:645656.CrossRefGoogle Scholar
Blake, D. B. and Elliott, D. R. 2003. Ossicular homologies, systematics, and phylogenetic implications of certain North American Carboniferous asteroids. Journal of Paleontology, 77:476489.CrossRefGoogle Scholar
Blake, D. B. and Hotchkiss, F. H. C. 2004. Recognition of the asteroid (Echinodermata) crown group: Implications of the ventral skeleton. Journal of Paleontology, 78:359370.2.0.CO;2>CrossRefGoogle Scholar
Blake, D. B., Guensburg, T. E., Sprinkle, J., and Sumrall, C. 2007. A new, phylogenetically significant Lower Ordovician asteroid (Echinodermata). Journal of Paleontology, 82:12571265.CrossRefGoogle Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier, Amsterdam, 427 p.Google Scholar
Eck, H. 1879. Bemerkungen zu den Mittheilungen des Herrn H. Pohlig über “Aspidura, ein mesozoisches Ophiuridengenus” und über die Lagerstätte der Ophiuren im Muschelkalk. Zeitschrift der Deutschen Geologischen Gessellschaft, 31:3553.Google Scholar
Foerste, A. F. 1919. Echinodermata of the Brassfield (Silurian) Formation of Ohio. Bulletin of the Scientific Laboratories of Denison University, 19:331.Google Scholar
Gervais, P. 1841. Astérie. Asterias. , p. 461481. In: Dictionnaire des Sciences Naturelles, suppl. 1., Paris.Google Scholar
Gordon, I. 1929. Skeletal development in Arbacia, Echinarachnius and Leptasterias. Philosophical Transactions of the Royal Society, London, series B, 217:289334.Google Scholar
Gordon, L. A. and Ettensohn, F. R. 1984. Stratigraphy, depositional environments and regional dolomitization of the Brassfield Formation (Llandoverian) in east-central Kentucky. Southeastern Geology, 25:101115.Google Scholar
Gregory, J. W. 1899. On Lindstromaster and the classification of the palaeasterids. Geological Magazine, dec. 4, 6:341354.CrossRefGoogle Scholar
Hall, J. 1852. Palaeontoloogy of New York. Volume 2. Containing descriptions of the organic remains of the lower middle division of the New-York System. C. van Benthuysen, Albany, 362 p.Google Scholar
Jaekel, O. 1923. Zur Morphogenie der Asterozoa. Palaeontologischen Zeitschrift, 5:344350.CrossRefGoogle Scholar
Kano, Y. T., Komatsu, M., and Oguro, C. 1974. Notes on the development of the sea-star Leptasterias ochotensis simispinis, with special reference to skeletal system. Proceedings of the Japanese Society of Systematic Zoology, 10:4553.Google Scholar
Kesling, R. V. 1969a. Silicaster, a new genus of Devonian starfish. Contributions from The Museum of Paleontology, The University of Michigan, 22:249261.Google Scholar
Kesling, R. V. 1969b. Three Permian starfish from Western Australia and their bearing on revision of the Asteroidea. Contributions from The Museum of Paleontology, The University of Michigan, 22:361376.Google Scholar
Kesling, R. V. and Strimple, H. L. 1966. Calliasterella americana, a new starfish from the Pennsylvanian of Illinois. Journal of Paleontology, 40: 11571166.Google Scholar
Komatsu, M. 1982. Development of the sea-star Ctenopleura fisheri. Marine Biology, 66:199205.CrossRefGoogle Scholar
Mooi, R. and David, B. 2000. What a new model of skeletal homologies tells us about asteroid evolution. American Zoologist, 40:326339.Google Scholar
Oguro, C., Komatsu, M., and Kano, Y. T. 1976. Development and metamorphosis of the sea-star Astropecten scoparius Valenciennes. Biological Bulletin, 151:560573.CrossRefGoogle ScholarPubMed
Rexroad, C. B. and Kleffner, M. A. 1984. The Silurian stratigraphy of east-central Kentucky and adjacent Ohio, p. 4465. In Rast, N. and Hay, H. B. (eds.), Field trip guides for Geological Society of America Annual Meeting, Southeastern and North-Central sections. Department of Geology and Kentucky Geological Survey, University of Kentucky, Lexington.Google Scholar
Röttger, R. H., Astheimer, M., Spindler, M., and Steinborn, J. 1972. Okologie von Asterocheres lilljeborgi, eines auf Henricia sanguinolenta parasitisch lebenden Copepoden. Marine Biology, 13:259266.CrossRefGoogle Scholar
Schuchert, C. 1915. Revision of Paleozoic Stelleroidea with special reference to North American Asteroidea. Bulletin of the U. S. National Museum, 88, 311 p.Google Scholar
Shackleton, J. D. 2005. Skeletal homologies, phylogeny and classification of the earliest asterozoan echinoderms. Journal of Systematic Palaeontology, 3:29114.CrossRefGoogle Scholar
Smith, A. B. and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Spencer, W. K. 1916. British Palaeozoic Asterozoa, Pt. 2, Palaeontographical Society of London Monograph, 57108.Google Scholar
Spencer, W. K. 1919. British Palaeozoic Asterozoa, Pt. 4, Palaeontographical Society of London Monograph, 169196.Google Scholar
Spencer, W. K. 1951. Early Palaeozoic starfishes. Philosophical Transactions of the Royal Society, London, series B, 235:87129.Google Scholar
Spencer, W. K. and Wright, C. W. 1966. Asterozoans, p. U4U107. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Stuertz, B. 1900. Ein weiter Beitrag zur Kenntnis palaeozoischer Asteroiden. Verhandlungen des Naturhistorischen Vereins der Preussischen Rheinlande und Westfalens, 56:176240.Google Scholar
Weir, G. W. and Mcdowell, R. C. 1976. Geologie map of the Preston Quadrangle, Bath and Montgomery counties, Kentucky. U.S. Geological Survey Geological Quadrangle Map GQ-1334.Google Scholar
Ziegler, A. M. 1965. Silurian marine communities and their environmental significance. Nature, 207:270272.CrossRefGoogle Scholar