Hostname: page-component-cc8bf7c57-n7pht Total loading time: 0 Render date: 2024-12-12T01:45:33.708Z Has data issue: false hasContentIssue false

A camerate-rich Late Carboniferous (Moscovian) crinoid fauna from volcanic conglomerate, Xinjiang, People's Republic of China

Published online by Cambridge University Press:  20 May 2016

N. Gary Lane
Affiliation:
1Department of Geological Sciences, Indiana University, Bloomington 47405
Johnny A. Waters
Affiliation:
2Department of Geology, West Georgia College, Carrollton 30118
Christopher G. Maples
Affiliation:
3Kansas Geological Survey, University of Kansas, Lawrence 66047
Sara A. Marcus
Affiliation:
3Kansas Geological Survey, University of Kansas, Lawrence 66047
Z.-T. Liao
Affiliation:
4Nanjing Institute of Geology and Paleontology, Nanjing, PRC

Abstract

A low-diversity camerate-rich crinoid fauna from the Qijiagou Formation, Taoshigo Valley near Turpan, Xinjiang-Uygar Autonomous Region, China was collected during field work in May, 1993. The crinoid fauna is dominated by species of Platycrinites. Other camerate crinoids include a species in the Paragaricocrinidae, Actinocrinites, a hexacrinitid, and an acrocrinoid. The only other non-North American occurrence of this latter family is Springeracrocrinus from the Moscovian of Russia. In addition to the camerates, there are several advanced cladid inadunates more typical of Upper Carboniferous crinoid faunas, including an erisocrinoid (possibly Sinocrinus), Graphiocrinus, ?Cromyocrinus, and an agassizocrinoid (Petschoracrinus) represented by partly fused infrabasal cones. A single radial plate with angustary facet may represent a cyathocrinoid. There also is a catillocrinoid, assigned here to Paracatillocrinus. The fauna, which resembles Moscovian crinoids described from Russia, is preserved in graded volcanic conglomeratic debris flows that overlie a carbonate mound and contain clasts up to 3 m in dimension. The crinoids are fragmentary, with many calyces seemingly torn into two or three pieces and dumped in with the pyroclastic debris. Camerates are represented by large thecal scraps consisting of numerous plates, or by large individual plates or circlets. Other fossils include rare solitary rugose corals, tabular bryozoans, Neospirifer, and other fragmentary brachiopods. We suspect that the crinoids may have been swept off of a nearby carbonate mound and deposited as debris-flow bedload.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arendt, Yu. A. 1983. A new Middle Carboniferous camerate crinoid genus from the Moscow Basin (Novyi pod srednekamennougolnykh podmoskovnykh krinoideicamerat). Paleontologicheskii Zhurnal, 4:101105.Google Scholar
Arendt, Yu. A., and Stupachenko, A. V. 1983. New data on the Acrocrinids (Novyi dannye ob Akrokrinidakh). Paleontologicheskii Zhurnal, 2:6980.Google Scholar
Austin, T., and Austin, T. Jr. 1842. XVIII-Proposed arrangement of the Echinodermata, particularly as regards the Crinoidea, and a subdivision of the class Adelostella (Echinidae). Annals and Magazine of Natural History, Series 1, 10:106113.Google Scholar
Bai, Y., Chen, G., Sun, Q., Sun, Y., Li, Y., Dong, Y., and Sun, D. 1987. Late Paleozoic polar wander path for the Tarim platform and its tectonic significance. Tectonophysics, 139:145153.Google Scholar
Bassler, R. S. 1938. Pelmatozoa Palaeozoica, p. 1194. In Quenstedt, W. (ed.), Fossilium Catalogus I, Animalia, Part. 83. W. Junk, s'Gravenhage.Google Scholar
Bather, F. A. 1890. British fossil crinoids. II. The classification of the Inadunata. Annals and Magazine of Natural History, Series 6, 5:310334.Google Scholar
Bather, F. A. 1899. A phylogenetic classification of the Pelmatozoa. British Association for the Advancement of Science Reports for 1898. p. 916923.Google Scholar
Bowsher, A. L., and Strimple, H. L. 1986. Platycrinites and associated crinoids from Pennsylvanian rocks of the Sacramento Mountains, New Mexico. New Mexico Bureau of Mines and Mineral Resources Circular 197, 36 p.Google Scholar
Bronn, H. G. 1849. Index palaeontologicus, unter Mitwirkung der Herren Prof. H. R. Goppert und H. von Meyer: Handbuch einer Geschichte der Natur, Volume 5, Abt. 1, Number 1, 2, Part 3, A. Nomenclator palaeontologicus: A-M, p. 1775; N-Z, p. 7761381, Stuttgart.Google Scholar
Carpenter, P. H., and Etheridge, R. Jr. 1881. Contributions to the study of the British Palaeozoic crinoids.-Number 1. On Allagecrinus, the representative of the Carboniferous limestone series. Annals and Magazine of Natural History Series 5, 7:281298.Google Scholar
Carroll, A. R., Liang, Y., Graham, S. A., Xiao, X., Hendrix, M. S., Chu, J., and McKnight, C. L. 1990. Junggar basin, northwest China: trapped Late Paleozoic ocean. Tectonophysics, 181:114.Google Scholar
De Koninck, L. G., and Le Hon, H. S. 1854. Recherches sur les crinoides du terrain carbonifere de la Belgique. Academie Royale Belgique Memoire, 28(3), 217 p.Google Scholar
Hashimoto, K. 1984. Preliminary study of Carboniferous calyces from the Akiyoshi Limestone Group, southwest Japan. Bulletin of the Yamaguchi Prefectural Yamaguchi Museum Number 10, 53 p.Google Scholar
Holtedahl, O. 1911. Zur kenntnis der Karbonablagerungen des westlichen Spitzbergens, I. Eine Fauna der Moskauer Stufe. Videnskapsselskapets Skrifter. I. Matematische-naturwissenschaftliche Klas, 10, 46 p.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Palaeontogische Zeitschrift, 3:1128.Google Scholar
Kirk, E. 1941. Four new genera of Mississippian Crinoidea Inadunata. Journal of Paleontology, 15:8288.Google Scholar
Lane, N. G., and Sevastopulo, G. 1986. Micromorph crinoid fauna of the McCraney Limestone (Mississippian, Kinderhookian) of western Illinois. Journal of Paleontology, 60:898903.Google Scholar
Liao, Z., Lu, L., Jiang, N., Xia, F., Sun, F., and Zhou, Y. 1987. Carboniferous and Permian in the western part to the East Mts. Tianshan. 11th International Congress of Carboniferous Stratigraphy and Geology, Guidebook for Excursion 4. Beijing, China, 39 p.Google Scholar
Miller, J. S. 1821. A natural history of the Crinoidea or lily-shaped animals, with observation on the genera Asteria, Euryale, Comatula, and Marsupites. Bryan Co., Bristol, 150 p.Google Scholar
Miller, S. A. 1889. North American geology and paleontology. Western Methodist Book Concern, Cincinnati, 664 p.Google Scholar
Moore, R. C. 1952. Crinoids, p. 604652. In Moore, R. C., Lalicker, C. G., and Fischer, A. G., Invertebrate Fossils. McGraw-Hill, New York.Google Scholar
Moore, R. C., and Jeffords, R. M. 1968. Classification and nomenclature of fossil crinoids based on studies of dissociated parts of their columns. University of Kansas Paleontological Contributions, Echinodermata, Article 9, 86 p.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper, 46, 153 p.Google Scholar
Moore, R. C., and Strimple, H. L. 1969. Explosive evolutionary differentiation of unique group of Mississippian-Pennsylvanian camerate crinoids (Acrocrinidae). University of Kansas Paleontological Contributions, Paper 39, 44 p.Google Scholar
Moore, R. C., and Strimple, H. L. 1973. Lower Pennsylvanian (Morrowan) crinoids from Arkansas, Oklahoma, and Texas. University of Kansas Paleontological Contributions, Echinodermata, Article 60, 84 p.Google Scholar
Nie, S., Rowley, D. B., and Ziegler, A. M. 1990. Constraints on the locations of Asian microcontinents in Palaeo-Tethys during the Late Palaeozoic, p. 397409. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. The Geological Society, London, Memoir 12.Google Scholar
Reed, F. R. C. 1925. Upper Carboniferous fossils from Chitral and the Pamirs. India Geological Survey, Memoirs, Palaeontologia Indica, New Series, Volume 6, Memoir 4, 134 p.Google Scholar
Strimple, H. L. 1962a. Platycrinitid columnals from the Pumpkin Creek Limestone, Oklahoma. Oklahoma Geology Notes, 22:35.Google Scholar
Strimple, H. L. 1962b. Crinoids from the Oologah Formation (Oklahoma). Oklahoma Geological Survey Circular, 60, 75 p.Google Scholar
Strimple, H. L. 1976. Upper Carboniferous crinoids of northwest Spain. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 10:630640.Google Scholar
Strimple, H. L., and Watkins, W. T. 1969. Carboniferous crinoids of Texas with stratigraphic implications. Palaeontographica Americana, 6:141275.Google Scholar
Termier, G., and Termier, H. 1950. Palaeontologie Marocaine II. Invertebres de l'Ere Primaire: notes et memoires. Service Carte Geologique Morocco, 79, Fascicle 4:55105.Google Scholar
Tien, C.C. 1926. Crinoids from the Taiyuan series of north China. China Geological Survey, Palaeontologica Sinica, Series B, 5(1), 47 p.Google Scholar
Trautschold, H. 1867. Einige Crinoiden und andere Tierreste des jungeren Bergkalk im Gouvernement Moskau. Societe Imperiale Natural. Moscou, Bulletin, Volume 40, Part 2(3), 49 p.Google Scholar
Ubaghs, G., et al. 1978. Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. 3 vol. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wachsmuth, C., and Springer, F. 1885. Revision of the Paleocrinoidea, Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions. Academy of Natural Sciences Philadelphia Proceedings, Part 3, Section 1:223364.Google Scholar
Wachsmuth, C., and Springer, F. 1886. Revision of the Paleocrinoidea, discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions. Academy of Natural Sciences Philadelphia Proceedings, Part 3, Section 2:64226, 303-334.Google Scholar
Wanner, J. 1916. Die permischen Echinodermen von Timor; Teil 1. Palaeontologie von Timor, 6(11), 329 p.Google Scholar
Watkins, R. 1993. Carbonate bank sedimentation in a volcaniclastic arc setting: Lower Carboniferous limestones of the eastern Klamath Terrane, California. Journal of Sedimentary Petrology, 63:966973.Google Scholar
Webster, G. D. 1987. Permian crinoids from the type-section of the Callytharra Formation, Callytharra Springs, Western Australia. Alcheringa, 11:95135.Google Scholar
Webster, G. D., and Lane, N. G. 1967. Additional Permian Crinoids from Southern Nevada. University of Kansas Paleontological Contributions, Paper 27, 32 p.Google Scholar
Webster, G. D., and Lane, N. G. 1970. Carboniferous echinoderms from the southwestern United States. Journal of Paleontology, 44:276296.Google Scholar
Weller, J. M. 1930. On the occurrence of Platycrinus in Pennsylvanian strata of western Indiana. Illinois Academy of Sciences Transactions, 22:478484.Google Scholar
Xu, W., Zhang, K., Gao, M., and Yao, H. 1987. Evolution of plate tectonics of the northwestern Junggar basin and its control over oil and gas. Oil and Gas Geology, 8:163170.Google Scholar
Yakovlev, N. N. 1928. Dva novykh roda morskikh liliy (Poteriocrinidae) iz verkhnepaleozoiskikh otlozheniy Pechorskogo kraya. Akademie Nauk SSSR, Geologicheskya Muzeya Trudy, 3:18.Google Scholar
Yakovlev, N. N., and Ivanov, A. P. 1956. Morskie lillie i blasatoidei kamennougolnykh i permskikh otlozhenii SSSR. Vsesoiuznogo nauchno-Issledsvatelskogo Geologicheskogo Instituta Trudy, New Series, 11, 142 p.Google Scholar
Zhang, L. 1987. Carboniferous Stratigraphy in China. Contribution to the 11th International Congress of Carboniferous Stratigraphy and Geology, Beijing, China. Science Press, Beijing, 160 p.Google Scholar