Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T05:42:40.819Z Has data issue: false hasContentIssue false

Proficiency of allocentric and egocentric wayfinding: a comparison of schoolchildren with young adults and older adults

Published online by Cambridge University Press:  11 April 2022

Klara Rinne
Affiliation:
Institute for Exercise Training and Sport Informatics, German Sport University, Köln, Germany
Daniel Memmert
Affiliation:
Institute for Exercise Training and Sport Informatics, German Sport University, Köln, Germany
Otmar Bock*
Affiliation:
Institute for Exercise Training and Sport Informatics, German Sport University, Köln, Germany
*
*Corresponding author. E-mail: [email protected]

Abstract

Wayfinding skills decay in old age, more so for wayfinding in an allocentric than an egocentric reference frame. This study investigates whether wayfinding deficits of schoolchildren mimic those of older adults. Schoolchildren were tested on two wayfinding tasks: one could only be mastered in an allocentric, and the other only in an egocentric reference frame. The results were compared with those from a previous study of young and older adults who had been tested on the same two wayfinding tasks. It was found that wayfinding performance improved somewhat from school age to young adulthood and that this improvement proceeded more or less in parallel for the allocentric and the egocentric tasks. It was further found that wayfinding performance decayed from young to older adulthood and that this decay was more dramatic for the allocentric than for the egocentric task. This pattern of findings does not support the hypothesis that the wayfinding performance of schoolchildren mimics that of older adults.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acredolo, L. P., Pick, H. L. and Olsen, M. G. (1975). Environmental differentiation and familiarity as determinants of children's memory for spatial location. Developmental Psychology, 11(4), 495. doi:10.1037/h0076667CrossRefGoogle Scholar
Allen, G. L., Kirasic, K. C. and Beard, R. L. (1989). Children's expressions of spatial knowledge. Journal of Experimental Child Psychology, 48(1), 114130. doi:10.1016/0022-0965(89)90043-XCrossRefGoogle ScholarPubMed
Bohbot, V., McKenzie, S., Konishi, K., Fouquet, C., Kurdi, V., Schachar, R., Boivin, M. and Robaey, P. (2012). Virtual navigation strategies from childhood to senescence: Evidence for changes across the life span. Frontiers in Aging Neuroscience, 4, 28. doi:10.3389/fnagi.2012.00028CrossRefGoogle ScholarPubMed
Bullens, J., Iglói, K., Berthoz, A., Postma, A. and Rondi-Reig, L. (2010). Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. Journal of Experimental Child Psychology, 107(3), 337350. doi:10.1016/j.jecp.2010.05.010CrossRefGoogle ScholarPubMed
Burgess, P. W., Alderman, N., Forbes, C., Costello, A., Laure, M. C., Dawson, D. R., Anderson, N. D., Gilbert, S. J., Dumontheil, I. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12(02), 194209.CrossRefGoogle ScholarPubMed
Cohen, R. and Schuepfer, T. (1980). The representation of landmarks and routes. Child Development, 51(4), 10651071. doi:10.2307/1129545CrossRefGoogle Scholar
Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P. and Riva, G. (2017). Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience and Biobehavioral Reviews, 80, 605621. doi:10.1016/j.neubiorev.2017.07.012CrossRefGoogle ScholarPubMed
Cornell, E. H., Heth, C. D. and Broda, L. S. (1989). Children's wayfinding: Response to instructions to use environmental landmarks. Developmental Psychology, 25(5), 755. doi:10.1037/0012-1649.25.5.755CrossRefGoogle Scholar
Cousins, J. H., Siegel, A. W. and Maxwell, S. E. (1983). Way finding and cognitive mapping in large-scale environments: A test of a developmental model. Journal of Experimental Child Psychology, 35(1), 120. doi:10.1016/0022-0965(83)90066-8CrossRefGoogle ScholarPubMed
Ekstrom, A. D., Spiers, H. J., Bohbot, V. D. and Rosenbaum, R. S. (2018). Human Spatial Navigation. Princeton, New Jersey: Princeton University Press.CrossRefGoogle Scholar
Faul, F., Erdfelder, E., Lang, A.-G. and Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. doi.org/10.3758/BF03193146CrossRefGoogle ScholarPubMed
Fricke, M. and Bock, O. (2018). Egocentric navigation is age-resistant: First direct behavioral evidence. Current Neurobiology, 9(2), 6975.Google Scholar
Hamburger, K. (2020). Visual landmarks are exaggerated: A theoretical and empirical view on the meaning of landmarks in human wayfinding. KI-Künstliche Intelligenz, 34, 557562. doi:10.1007/s13218-020-00668-5CrossRefGoogle Scholar
Harris, M. A., Wiener, J. M. and Wolbers, T. (2012). Aging specifically impairs switching to an allocentric navigational strategy. Frontiers in Aging Neuroscience, 4. doi:10.3389/fnagi.2012.00029CrossRefGoogle Scholar
Herman, J. F. and Siegel, A. W. (1977). The Development of Spatial Representations of Large-Scale Environments. (NICHHD-HD-09694). Bethesda, MD: National Institutes of Child Health and Human Development. files.eric.ed.gov/fulltext/ED145958.pdfGoogle Scholar
Hölscher, C., Buchner, S. J., Meilinger, T. and Strube, G. (2009). Adaptivity of wayfinding strategies in a multi-building ensemble: The effects of spatial structure, task requirements, and metric information. Journal of Environmental Psychology, 29(2), 208219. doi:10.1016/j.jenvp.2008.05.010CrossRefGoogle Scholar
Iaria, G., Petrides, M., Dagher, A., Pike, B. and Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. The Journal of Neuroscience, 23(13), 59455952. doi:10.1523/JNEUROSCI.23-13-05945.2003CrossRefGoogle Scholar
Iglói, K., Zaoui, M., Berthoz, A. and Rondi-Reig, L. (2009). Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus, 19(12), 11991211. doi:10.1002/hipo.20595CrossRefGoogle Scholar
Jacobs, W. J., Laurance, H. E. and Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28(4), 521541. doi:10.1006/lmot.1997.0977CrossRefGoogle Scholar
Jansen-Osmann, P. and Fuchs, P. (2006). Wayfinding behavior and spatial knowledge of adults and children in a virtual environment: The role of landmarks. Experimental Psychology, 53(3), 171181. doi:10.1027/1618-3169.53.3.171CrossRefGoogle Scholar
Jansen-Osmann, P. and Wiedenbauer, G. (2004). The representation of landmarks and routes in children and adults: A study in a virtual environment. Journal of Environmental Psychology, 24(3), 347357. doi:10.1016/j.jenvp.2004.08.003CrossRefGoogle Scholar
Lingwood, J., Blades, M., Farran, E. K., Courbois, Y. and Matthews, D. (2015). The development of wayfinding abilities in children: Learning routes with and without landmarks. Journal of Environmental Psychology, 41, 7480. doi:10.1016/j.jenvp.2014.11.008CrossRefGoogle Scholar
Magliano, J. P., Cohen, R., Allen, G. L. and Rodrigue, J. R. (1995). The impact of a wayfinder's goal on learning a new environment: Different types of spatial knowledge as goals. Journal of Environmental Psychology, 15(1), 6575. doi:10.1016/0272-4944(95)90015-2CrossRefGoogle Scholar
Merriman, N. A., Ondřej, J., Roudaia, E., O'Sullivan, C. and Newell, F. N. (2016). Familiar environments enhance object and spatial memory in both younger and older adults. Experimental Brain Research, 234(6), 15551574. doi:10.1007/s00221-016-4557-0CrossRefGoogle ScholarPubMed
Moffat, S. D. (2009). Aging and spatial navigation: What do we know and where do we go? Neuropsychology Review, 19(4), 478. doi:10.1007/s11065-009-9120-3CrossRefGoogle Scholar
Montefinese, M., Sulpizio, V., Galati, G. and Committeri, G. (2015). Age-related effects on spatial memory across viewpoint changes relative to different reference frames. Psychological Research, 79(4), 687697. doi:10.1007/s00426-014-0598-9CrossRefGoogle ScholarPubMed
Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 4760. doi:10.1016/0165-0270(84)90007-4CrossRefGoogle ScholarPubMed
Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J. and Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26(4), 300308. doi:10.1016/j.jenvp.2006.08.001CrossRefGoogle Scholar
Nadel, L. and Hardt, O. (2004). The spatial brain. Neuropsychology, 18(3), 473.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press.Google Scholar
Rissotto, A. and Tonucci, F. (2002). Freedom of movement and environmental knowledge in elementary school children. Journal of Environmental Psychology, 22(1-2), 6577. doi:10.1006/jevp.2002.0243CrossRefGoogle Scholar
Rodgers, M. K., Sindone, J. A. and Moffat, S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33(1), 202. doi:10.1016/j.neurobiolaging.2010.07.021CrossRefGoogle ScholarPubMed
Tlauka, M. and Wilson, P. N. (1994). The effect of landmarks on route-learning in a computer-simulated environment. Journal of Environmental Psychology, 14(4), 305313. doi:10.1016/S0272-4944(05)80221-XCrossRefGoogle Scholar
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189208.CrossRefGoogle ScholarPubMed
van Asselen, M., Fritschy, E. and Postma, A. (2006). The influence of intentional and incidental learning on acquiring spatial knowledge during navigation. Psychological Research, 70(2), 151156. doi:10.1007/s00426-004-0199-0CrossRefGoogle ScholarPubMed
Vasilyeva, M. and Lourenco, S. F. (2012). Development of spatial cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 349362. doi:10.1002/wcs.1171Google ScholarPubMed
Waller, D. and Lippa, Y. (2007). Landmarks as beacons and associative cues: Their role in route learning. Memory and Cognition, 35(5), 910924. doi:10.3758/BF03193465CrossRefGoogle ScholarPubMed
Wiener, J. M., Büchner, S. J. and Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition and Computation, 9(2), 152165. doi:10.1080/13875860902906496CrossRefGoogle Scholar
Wiener, J., de Condappa, O. and Hölscher, C. (2011). Do You Have to Look Where You Go? Gaze Behaviour During Spatial Decision Making. In Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 33(33), pp. 15831588. https://escholarship.org/uc/item/9n91h72nGoogle Scholar
Wiener, J. M., Kmecova, H. and de Condappa, O. (2012). Route repetition and route retracing: Effects of cognitive aging. Frontiers in Aging Neuroscience, 4, doi:10.3389/fnagi.2012.00007CrossRefGoogle ScholarPubMed
Wolbers, T. and Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138146. doi.org/10.1016/j.tics.2010.01.001CrossRefGoogle ScholarPubMed