Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T16:19:42.615Z Has data issue: false hasContentIssue false

Efficient LEO Dynamic Orbit Determination with Triple Differenced GPS Carrier Phases

Published online by Cambridge University Press:  20 April 2007

Tae-Suk Bae
Affiliation:
(The Ohio State University) (Email: [email protected])
Dorota Grejner-Brzezinska
Affiliation:
(The Ohio State University) (Email: [email protected])
Jay Hyoun Kwon
Affiliation:
(The University of Seoul)

Abstract

The dynamic precise orbit determination of a Low Earth Orbit satellite using triple differenced GPS phases is presented in this study. The atmospheric drag parameters are estimated to compensate the incomplete atmosphere model for better precision of the orbit solution. In addition, the empirical force parameters, especially once- and twice-per-revolution components, along with the new IERS Conventions and models to compute the perturbing forces are introduced to absorb the remaining unmodelled forces. The optimal arc length for the parameterization and the data processing strategy are also tested and analyzed for the best orbit solutions. The triple differencing technique enables fast and efficient orbit estimation, because no ambiguity resolution and cycle slip detection are required. With the triple differenced ion-free GPS phase observables, the orbit and the velocity solutions for 24 hours of CHAMP are calculated; they compare with the published Rapid Science Orbit with the accuracy of 8 cm and 0·12 mm/s in 3D RMS for the orbit and the velocity, respectively, and are statistically consistent with the RSO when it is not better than 4 cm in terms of an absolute accuracy. The approach presented here provides an efficient and simple, but robust, alternative approach, while the solution's accuracy is still comparable to the double-difference results.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bae, T.-S. (2005). LEO Dynamic Orbit Enhancement using Atmospheric and Empirical Force Modeling. ION GNSS 2005, Long Beach, CA.Google Scholar
Bock, H. (2003). Efficient methods for determining precise orbits of Low Earth Orbiters using the Global Positioning System. Vol. 65 of Geodätisch-geophysikalische Arbeiten in der Schweiz, Schweizerische Geodätisch Kommission.Google Scholar
Byun, S. H. (2003). Satellite orbit determination using triple-differenced GPS carrier phase in pure kinematic mode. Journal of Geodesy, 76, 569585.CrossRefGoogle Scholar
Byun, S. H., Schutz, B. E. (2001). Improving satellite orbit solution using double-differenced GPS carrier phase in kinematic mode. Journal of Geodesy, 75, 533543.CrossRefGoogle Scholar
CHAMP (2005). CHAMP homepage. Available at: http://www.gfz-potsdam.de/pb1/op/champ/index_CHAMP.html, accessed April.Google Scholar
Eren, K. (1986). GPS geodetic network adjustment using triple difference observations and a priori information. Manuscripta geodaetica, 11, 289292.Google Scholar
Ge, M., Calais, E. and Haase, J. (2002). Sensitivity of zenith total delay accuracy to GPS orbit errors and implications for near-real-time GPS meteorology. Journal of Geophysical Research, 107(D16), 4315.CrossRefGoogle Scholar
Goad, C. C., Goodman, L. (1974). A Modified Hopfield Tropospheric Refraction Correction Model. Presented at the Fall Annual Meeting of the American Geophysical Union, San Franscisco, California.Google Scholar
Grejner-Brzezinska, D. A. (1995). Analysis of GPS data processing techniques: In search of optimized strategy of orbit and Earth rotation parameter recovery. Report No. 432, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio.Google Scholar
Hedin, A. E. (1991). Extension of the MSIS thermosphere model into the middle and lower atmosphere. Journal of Geophysical Research, 96(A2), 11591172.CrossRefGoogle Scholar
Hugentobler, U., Schaer, S. and Fridez, P. (eds.) (2001). Bernese GPS Software Version 4.2. Astronomical Institute University of Berne.Google Scholar
IERS Conventions (2003). See McCarthy and Petit (2003).Google Scholar
König, R., Zhu, S., Reigber, Ch., Neumayer, K.-H., Meixner, H., Galas, R., Baustert, G. and Schwintzer, P. (2002). CHAMP Rapid Orbit Determination for GPS Atmospheric Limb Sounding. Advances in Space Research, 30(2), 289293.CrossRefGoogle Scholar
Kuang, D., Bar-Sever, Y., Bertiger, W., Desai, S., Haines, B., Iijima, B., Kruizinga, G., Meehan, T. and Romans, L. (2001). Precise Orbit Determination for CHAMP using GPS Data from Blackjack Receiver. ION NTM 2001, Long Beach, CA.Google Scholar
Kwon, J., Grejner-Brzezinska, D., Bae, T. and Hong, C. (2003). Triple Difference Approach to Low Earth Orbiter Precision Orbit Determination. The Journal of Navigation, 56, 456473.CrossRefGoogle Scholar
McCarthy, D. and Petit, G. (2003). IERS Technical Note No. 32. IERS Conventions (2003), IERS Conventions Centre, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main.Google Scholar
Montenbruck, O. and Gill, E. (2001). Satellite Orbits: Models, Methods, Applications. Springer-Verlag Berlin Heidelberg.Google Scholar
Remondi, B. W. and Brown, G. (2000). Triple differencing with Kalman filtering: making it work. GPS Solutions, 3(3), 5864.CrossRefGoogle Scholar
Schaffrin, B. and Grafarend, E. (1986). Generating classes of equivalent linear models by nuisance parameter elimination. Manuscripta Geodaetica, 11, 262271.Google Scholar
Švehla, D. and Rothacher, M. (2003). Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Advances in Geosciences, 1, 4756.CrossRefGoogle Scholar
Tapley, B. D., Ries, J. C., Davis, G. W., Eeanes, R. J., Schutz, B. E., Shum, C. K., Watkins, M. M., Marshall, J. A., Nerem, R. S., Putney, B. H., Klosko, S. M., Luthcke, S. B., Pavlis, D., Williamson, R. G. and Zelensky, N. P. (1994). Precise orbit determination for TOPEX/POSEIDON. Journal of Geophysical Research, 99(C12), 24,38324,404.CrossRefGoogle Scholar