Published online by Cambridge University Press: 04 March 2021
This paper introduces a power series based method for attitude reconstruction from triad orthogonal strap-down gyros. The method is implemented and validated using quaternions and direction cosine matrix in single and double precision implementation forms. It is supposed that data from gyros are sampled with high frequency and a fitted polynomial is used for an analytical description of the angular velocity vector. The method is compared with the well-known Taylor series approach, and the stability of the coefficients’ norm in higher-order terms for both methods is analysed. It is shown that the norm of quaternions’ derivatives in the Taylor series is bigger than the equivalent terms coefficients in the power series. In the proposed method, more terms can be used in the power series before the saturation of the coefficients and the error of the proposed method is less than that for other methods. The numerical results show that the application of the proposed method with quaternions performs better than other methods. The method is robust with respect to the noise of the sensors and has a low computational load compared with other methods.