Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:54:37.109Z Has data issue: false hasContentIssue false

X-ray reflectivity study of solution-deposited ZrO2 thin films on self-assembled monolayers: Growth, interface properties, and thermal densification

Published online by Cambridge University Press:  31 January 2011

K. A. Ritley
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D-70569 and Institut für Theoretische und Angewandte Physik, Universität Stuttgart, D-70550, Stuttgart, Germany
K-P. Just
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D-70569 and Institut für Theoretische und Angewandte Physik, Universität Stuttgart, D-70550, Stuttgart, Germany
F. Schreiber*
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D-70569 and Institut für Theoretische und Angewandte Physik, Universität Stuttgart, D-70550, Stuttgart, Germany
H. Dosch
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D-70569 and Institut für Theoretische und Angewandte Physik, Universität Stuttgart, D-70550, Stuttgart, Germany
T. P. Niesen
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, D-70569 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, D-70569 Stuttgart, Germany
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

Thin films of ZrO2 were deposited from aqueous solution on Si(100) substrates precovered by functionalized alkyltrichlorosilane self-assembled monolayers (SAMs). The interface structure, thermal stability, and densification of these films in the temperature range from room temperature to 750 °C in vacuum were measured using in situ x-ray reflectivity. The growth rate is a nonlinear function of time in solution, with a pronounced nonuniformity during the first 30 min. The as-deposited films exhibit about 3-nm roughness and a density below that of bulk ZrO2. Measurements in vacuum reveal decreasing film thickness, increasing film density, and decreasing roughness upon annealing up to 750 °C. The densification saturates at the highest measured temperatures, presumably following evaporation of residual contaminants from the aqueous synthesis procedure. Above 200 °C the SAM/ZrO2 interface began to deteriorate, possibly due to interdiffusion. The ZrO2 film structure obtained at the highest annealing temperatures persisted upon cooling to room temperature, and there was no visible evidence of stress-induced microstructural changes, such as peeling or cracking.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bandyopadhyay, K. and Viyayamohanan, K., Langmuir 14, 6924 (1998).CrossRefGoogle Scholar
2.Brenier, R., Urlacher, C., Mugnier, J., and Brunel, M., Thin Solid Films 338, 136 (1999).CrossRefGoogle Scholar
3.Aita, C.R., Wiggins, M.D., Whig, R., Scanlan, C.M., and Gajdardziska-Josifovska, M., J. Appl. Phys. 79, 1176 (1996);CrossRefGoogle Scholar
Ghanashyam Krishna, M., Kanakaraju, S., and Narasimha Rao, K., and Mohan, S., Mater. Sci. Eng. B 21, 10 (1993).CrossRefGoogle Scholar
4.Balog, M., Schieber, M., Michman, M., and Patai, S., Thin Solid Films 47, 109 (1977).CrossRefGoogle Scholar
5.Mann, S., in Biomimetic Materials Chemistry, edited by Mann, S. (VCH Publishers, New York, 1996), pp. 140.Google Scholar
6.Bunker, B.C., Rieke, P.C., Tarasevich, B.J., Campbell, A.A., Fryxell, G.E., Graff, G.L., Song, L., Liu, J., Virden, J.W., and McVay, G.L., Science 264, 48 (1994).CrossRefGoogle Scholar
7.Ulman, A., An Introduction to Ultrathin Organic Films: from Langmuir–Blodgett to Self-Assembly (Academic Press, Boston, 1991).Google Scholar
8.Heuer, A.H., Fink, D.J., Larai, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.J., Wheeler, A.P., Veis, A., and Caplan, A.I., Science 255, 1098 (1992).CrossRefGoogle Scholar
9.Agarwal, M., DeGuire, M.R., and Heuer, A.H., J. Am. Ceram. Soc. 80, 2967 (1997).CrossRefGoogle Scholar
10.Agarwal, M., DeGuire, M.R., and Heuer, A.H., Appl. Phys. Lett. 71, 891 (1998).CrossRefGoogle Scholar
11.Supothina, S. and DeGuire, M.R. (unpublished).Google Scholar
12.DeGuire, M.R., Niesen, T.P., Supothina, S., Wolff, J., Bill, J., Sukenik, C.N., Aldinger, F., Heuer, A.H., and Rühle, M., Z. Metallkd. 89, 758 (1998).Google Scholar
13.Shin, H., Collins, R.J., DeGuire, M.R., Heuer, A.H., and Sukenik, C.N., J. Mater. Res. 10, 692 (1995).CrossRefGoogle Scholar
14.Niesen, T.P., Wolff, J., Bill, J., Wagner, T., and Aldinger, F., in Advances in Science and Technology, edited by Vincencini, P. (Technical Publications, Florence, 1999) Vol. 20, pp. 2134.Google Scholar
15.Niesen, T.P., Wolff, J., Bill, J., DeGuire, M.R., Aldinger, F., in Organic/Inorganic Hybrid Materials II, edited by Klein, L.C., Francis, L.F., DeGuire, M.R., and Mark, J.E. (Mater. Res. Soc. Symp. Proc. 576, Warrendale, PA, 1999) pp. 197202.Google Scholar
16.Fischer, A., Jentoft, F.C., Weinberg, G., Schögl, R., Niesen, T.P., Bill, J., Aldinger, F., DeGuire, M.R., and Rühle, M., J. Mater. Res. 14, 2464 (1999).CrossRefGoogle Scholar
17.Agarwal, M., Ph.D. Thesis, Case Western Reserve University, Cleveland, OH (1997).Google Scholar
18.Shin, H.J., Wang, Y.H., Sampathkumaran, U., DeGuire, M.R., Heuer, A.H., and Sukenik, C.N., J. Mater. Res. 14, 2116 (1999).CrossRefGoogle Scholar
19.Schreiber, F., Eberhardt, A., Leung, T.Y.B, Schwartz, P., Wetterer, S.M., Lavrich, D.J., Berman, L., Fenter, P., Eisenberger, P., and Scoles, G., Phys. Rev. B 57, 12476 (1998).CrossRefGoogle Scholar
20.Balachander, N. and Sukenik, C.N., Tetrahedron Lett. 29, 5593 (1988);CrossRefGoogle Scholar
Balachander, N. and Sukenik, C.N., Langmuir 6, 1621 (1990);CrossRefGoogle Scholar
Collins, R.J. and Sukenik, C.N., Langmuir 11, 2322 (1995).CrossRefGoogle Scholar
21.Tolan, M., X-Ray Scattering From Solt-Matter Thin Films, Springer Tracts in Modern Physics Vol. 148 (Springer, Berlin, 1999).CrossRefGoogle Scholar
22.Deutsch, M. and Ocko, B.M., Encyclopaedia of Applied Physics (Wiley, New York, 1998) Vol. 23, p. 479.Google Scholar
23.Parratt, L.G., Phys. Rev. 95, 359 (1954).CrossRefGoogle Scholar
24.Cowley, R.A., Ryan, T.W., J. Phys. D 20, 61 (1987).CrossRefGoogle Scholar
25.Pimpinelli, A. and Villain, J., Physics of Crystal Growth (Cambridge University Press, Cambridge, 1998), and references therein.CrossRefGoogle Scholar
26.Shin, H., Wang, Y., Sampathkumaran, U., DeGuire, M.R., Heuer, A.H., and Sukenik, C.N., Mater, J.. Res. (in press).Google Scholar
27.Jonathan Kluth, G., Sung, Myung M., and Maboudian, Roya, Langmuir 13, 3775 (1997).CrossRefGoogle Scholar
28.Sung, Myung M., Jonathan Kluth, G., Yauw, Oranna W., and Maboudian, Roya, Langmuir 13, 6164 (1997).CrossRefGoogle Scholar
29.Kluth, G.J., Sander, M., Sung, M.M., and Maboudian, R., J. Vac. Sci. Technol. A 16, 932 (1998).CrossRefGoogle Scholar
30.Ritley, K., Just, K-P., Schreiber, F., Niesen, T.P., Aldinger, F., and Dosch, H., Proceedings of the 4th International Conference on Thin Film Physics and Applications (Shanghai, China, 2000).Google Scholar