Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T21:53:52.376Z Has data issue: false hasContentIssue false

X-ray diffraction study of the effect of boron on lattice properties of Ni76Al24

Published online by Cambridge University Press:  31 January 2011

Mohan P.V. Rao
Affiliation:
Department of Physics, Osmania University, Hyderabad, AP 500 007, India
Murthy K. Satyanarayana
Affiliation:
Department of Physics, Osmania University, Hyderabad, AP 500 007, India
S.V. Suryanarayana
Affiliation:
Department of Physics, Osmania University, Hyderabad, AP 500 007, India
Naidu S.V. Nagender
Affiliation:
Defence Metallurgical Research Laboratory, Hyderabad, India
Get access

Abstract

A small addition of boron is suggested to increase the ductility of the polycrystalline Ni3Al when the Al content is less than 25 at.%. Both metallographic and x-ray investigation have shown the alloys of Ni3Al (24 at.% Al) containing 0.20, 0.42, 0.79, 0.98, and 1.22 at.% B to be of single phase and that of 1.76 at.% B to be of two phase. With the addition of boron, the lattice parameter of the Ni3Al phase is found to increase. Microhardness measurements indicate that initially the hardness decreases for the alloy of 0.20 at.% B, while for the rest of the single phase alloys the hardness is found to increase with further addition of boron. The addition of boron increases the deformation stacking fault probability value except for the alloy with 0.20 at.% B.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liu, C.T., White, C.L., and Horton, J.A., Acta Metall. 33, 213 (1985).CrossRefGoogle Scholar
2Horton, J.A. and Miller, M.K., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 105.Google Scholar
3Baker, I., Huang, B., and Schulson, E. M., Acta Metall. 36, 493 (1988).CrossRefGoogle Scholar
4Huang, S. C., Taub, A. I., and Chang, K. M., Acta Metall. 32, 1703 (1984).CrossRefGoogle Scholar
5Koch, C.C., Horton, J.A., Liu, C.T., Cavin, O.B., and Scarbrough, J.O., in Rapid Solidification Processing, Principles and Technologies III, edited by Mehrabian, R. (NBS, Washington, DC, 1983), p. 264.Google Scholar
6Adler, R. P. I. and Wagner, C. N. J., J. Appl. Phys. 33, 3451 (1962).CrossRefGoogle Scholar
7Kim, Y. G., Yoon, G.W., and Stoloff, N. S., J. Mater. Sci. Lett. 4, 1407 (1985).CrossRefGoogle Scholar
8Rao, P. V. Mohan, Murthy, K. Satyanarayana, Suryanarayana, S. V., and Nagender, S. V.Naidu, Phys. Status Solidi (a) 133, 231 (1992).CrossRefGoogle Scholar
9Rao, P. V. Mohan, Murthy, K. Satyanarayana, Suryanarayana, S. V., and Naidu, S. V. Nagender, Mater. Lett. 14, 281 (1992).CrossRefGoogle Scholar
10Qian, X.R. and Chou, Y.T., Mater. Lett. 6, 157 (1988).CrossRefGoogle Scholar
11Qian, X.R. and Chou, Y.T., J. Mater. Sci. 27, 1036 (1992).CrossRefGoogle Scholar
12Paterson, M. S., J. Appl. Phys. 23, 805 (1952).CrossRefGoogle Scholar
13Corey, C. L. and Potter, D. I., J. Appl. Phys. 38, 3894 (1967).CrossRefGoogle Scholar