Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:31:09.155Z Has data issue: false hasContentIssue false

X-ray depth profiling of iron oxide thin films

Published online by Cambridge University Press:  31 January 2011

Michael F. Toney*
Affiliation:
IBM Almaden Research Center, San Jose, California 95120
Ting C. Huang
Affiliation:
IBM Almaden Research Center, San Jose, California 95120
Sean Brennan
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, California 94305
Zophia Rek
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, California 94305
*
a)IBM Magnetic Recording Institute.
Get access

Abstract

A nominally γ-Fe2O3 thin film (oxidized from an Fe3O4 film) has been structurally depth profiled using x-ray scattering in a grazing incidence, asymmetric Bragg geometry. By varying the grazing incidence angle, the x-ray penetration depth is varied from tens of Angstroms to several thousand Angstroms, slightly larger than the film thickness. At small incidence angles a diffraction pattern characteristic of α-Fe2O3 is observed, while at larger angles the pattern is predominantly from γ-Fe2O3, showing that there is a surface layer of α-Fe2O3. These results are quantified and the thickness of the α phase found to be 90 Å. The presence of the α phase explains a nonferromagnetic layer observed previously. These data together with magnetic and chemical data suggest that the nonferromagnetic layer forms during oxidation of the Fe3O4 film due to outward diffusion of Fe ions and their subsequent oxidation to form α-Fe2O3

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Yoshii, S., Ishii, O., Hattori, S., Nakagawa, T., and Ishida, G., J. Appl. Phys. 53, 2556 (1982).CrossRefGoogle Scholar
2Ishii, Y., Terada, A., Ishii, I., Ohta, S., Hattori, S., and Makino, K., IEEE Trans. Mag. MAG-16, 1114 (1980).CrossRefGoogle Scholar
3Terada, A., Ishii, I., and Ohta, S., IEEE Trans. Mag. MAG-21, 521 (1985).Google Scholar
4Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 687.Google Scholar
5Chen, M. M., Ortiz, C., Lim, G., Sigsbee, R., and Castilo, G., IEEE Trans. Mag. MAG-23, 3423 (1987).CrossRefGoogle Scholar
6Parkin, S. S. P., Sigsbee, R., Felici, R., and Felcher, G. P., Appl. Phys. Lett. 48, 604 (1986).CrossRefGoogle Scholar
7Kay, E., Sigsbee, R., Bona, G. L., Taborelli, M., and Siegmann, H. C., Appl. Phys. Lett. 47, 533 (1986).CrossRefGoogle Scholar
8Huang, T. C., Toney, M. F., Brennan, S., and Rek, Z., Thin Solid Films 154, 439 (1987).CrossRefGoogle Scholar
9Hermsmejer, B., Brundle, C. R., and Baglin, J. J., J. Vac. Sci. Technol. A 5, 2864 (1987).CrossRefGoogle Scholar
10Brundle, C. R. and Deline, V. D. (private communication).Google Scholar
11Huang, T. C. and York, B. R., Appl. Phys. Lett. 50, 389 (1987).CrossRefGoogle Scholar
12Brennan, S., Surface Sci. 152/153, 1 (1985).Google Scholar
13Bohr, J., Feidenhans'l, R., Nielsen, M., Toney, M., Johnson, R., and Robinson, I., Phys. Rev. Lett. 54, 1275 (1985).CrossRefGoogle Scholar
14Marra, W., Fuoss, P., and Eisenberger, P., Phys. Rev. Lett. 49, 1169 (1982).CrossRefGoogle Scholar
15Marra, W., Eisenberger, P., and Cho, A., J. Appl. Phys. 50, 6927 (1979).CrossRefGoogle Scholar
16Doerner, M. F. and Brennan, S., J. Appl. Phys. 63, 126 (1988).CrossRefGoogle Scholar
17Vineyard, G. H., Phys. Rev. B 26, 4146 (1982).CrossRefGoogle Scholar
18Born, M. and Wolf, E., Principles of Optics (Pergamon, Oxford, 1980).Google Scholar
19Powder Diffraction File, Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, Swarthmore, PA, 1986. Card 13-534 for a-Fe2O3 and 25-1402 for y-Fe2O3.Google Scholar
20Bard, Y., Nonlinear Parameter Estimation (Academic, New York, 1974).Google Scholar