Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T17:13:56.097Z Has data issue: false hasContentIssue false

Using electrets to design concurrent magnetoelectricity and piezoelectricity in soft materials

Published online by Cambridge University Press:  21 November 2014

Zeinab Alameh
Affiliation:
Materials Program, University of Houston, Texas 77204, USA; and Department of Mechanical Engineering, University of Houston, Texas 77204, USA
Qian Deng
Affiliation:
Department of Mechanical Engineering, University of Houston, Texas 77204, USA
Liping Liu
Affiliation:
Department of Mathematics, Rutgers University, New Jersey, USA; and Department of Mechanical and Aerospace Engineering, Rutgers University, New Jersey 08854, USA
Pradeep Sharma*
Affiliation:
Materials Program, University of Houston, Texas 77204, USA; Department of Mechanical Engineering, University of Houston, Texas 77204, USA; and Department of Physics, University of Houston, Texas 77204, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Piezoelectricity and magnetoelectricity are contradictory properties with a rather limited set of natural (often hard) materials that exhibit both. Composite materials – almost always restricted to hard ones – provide a limited recourse with the attendant limitations of small strains, fabrication challenges among others. In this article, using the concept of electrets, we propose a simple scheme to design soft, highly deformable materials that simultaneously exhibit piezoelectricity and magnetoelectricity. We demonstrate that merely by embedding charges and ensuring elastic heterogeneity, the geometrically nonlinear behavior of soft materials leads to an emergent piezoelectric and magnetoelectric behavior. We find that an electret configuration made of sufficiently soft (nonpiezoelectric and nonmagnetic) polymer foams can exhibit simultaneous magnetoelectricity and piezoelectricity with large coupling constants that exceed the best-known ceramic composites. Moreover, we show that these properties can be tuned with the action of an external field.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Velev, J.P., Jaswal, S.S., and Tsymbal, E.Y.: Multi-ferroic and magnetoelectric materials and interfaces. Philos. Trans. R. Soc., A 369, 30693097 (2011).Google Scholar
Pyatakov, A.P. and Zvezdin, A.K.: Magnetoelectric and multiferroic media. Phys.-Usp. 55(6), 557581 (2012).Google Scholar
Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759765 (2006).Google Scholar
Gautschi, G.: Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors: Materials and Amplifiers (Springer-Verlag, New York, 2002).Google Scholar
Madden, J.D.W., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A., and Hunter, I.W.: Artificial muscle technology: Physical principles and naval prospects. IEEE J. Oceanic Eng. 29, 706728 (2004).Google Scholar
Labanca, M., Azzola, F., Vinci, R., and Rodella, L.F.: Piezoelectric surgery: Twenty years of use. Br. J. Oral Maxillofac. Surg. 46, 265269 (2008).Google Scholar
Wang, X., Song, J., Zhang, F., He, C., Hu, Z., and Wang, Z.: Electricity generation based on one-dimensional group 3 nitride nanomaterials. Adv. Mater. 22, 21552158 (2010).Google Scholar
Ryu, J., Priya, S., Uchino, K., and Kim, H.E.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107119 (2002).Google Scholar
Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123R152 (2005).Google Scholar
Van Suchtelen, J.: Product properties: A new application of composite materials. Philips Res. Rep. 27, 2837 (1972).Google Scholar
Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien, B.M., and Calius, E.P.: Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112, 041101–20 (2012).Google Scholar
Suo, Z., Zhao, X., and Greene, W.: A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids 56, 467 (2008).Google Scholar
Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23(6), 3743 (December 2010).Google Scholar
Liu, L. and Sharma, P.: Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology. Phys. Rev. E 88, 040601 (2013).Google Scholar
Deng, Q., Liu, L., and Sharma, P.: Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209227 (2013).Google Scholar
Hillenbrand, J. and Sessler, G.M.: DC-biased ferroelectrets with large piezoelectric d33-coefficients. J. Appl. Phys. 103, 074103 (2008).Google Scholar
Bauer, S.R., Gerhard-Multhaupt, R., and Sessler, G.M.: Ferroelectrets: Soft electroactive foams for transducers. Phys. Today 52(2), (2004).Google Scholar
Liu, L.: An energy formulation of continuum magneto-electro-elasticity with applications. J. Mech. Phys. Solids 63, 451480 (2014).Google Scholar
Minlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4(6), 637642 (1968).Google Scholar
Toupin, R.A.: The elastic dielectric. J. Rat. Mech. Anal. 5(6), 849915 (1956).Google Scholar
Gerhard-Multhaupt, R.: Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Trans. Dielectr. Electr. Insul. 9(5), 3645 (October 2002).Google Scholar
Jahns, R., Piorra, A., Lage, E., Kirchhof, C., Meyners, D., Gugat, K.L., Krantz, M., Gerken, M., Knochel, R., and Quandt, E.: Giant magnetoelectric effect in thin-film composites. J. Am. Ceram. Soc. 96, 16731681 (2013).Google Scholar
Harland, B., Brownell, W.E., Spector, A.A., and Sun, S.X.: Voltage-induced bending and electromechanical coupling in lipid bilayer. Phys. Rev. E 81, 031907–3 (2010).Google Scholar
Qu, S. and Yu, Y.: Electromechanical coupling properties and stability analysis of ferroelectrets. J. Appl. Phys. 110, 043525 (2011).Google Scholar
Eberle, G., Schmidt, H., and Eisenmenger, W.: Piezoelectric polymer electrets. IEEE Trans. Dielectr. Electr. Insul. 3(5), 624646 (1996).Google Scholar
Shan, W., Lu, T., Wang, Z.H., and Majidi, C.: Thermal analysis and design of a multilayered rigidity tunable composites. Int. J. Heat Mass Transfer 66, 271278 (2013).Google Scholar
Zhao, X. and Suo, Z.: Electrostriction in elastic dielectrics undergoing large deformation. J. Appl. Phys. 108, 123530–7 (2008).Google Scholar
Wan, Y., Xie, L., and Zhong, Z.: Micromechanical prediction of the effective electromechanical properties of cellular ferroelectrets. J. Appl. Phys. 108, 054101 (2010).Google Scholar
Srinivasan, G.: Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153178 (2010).Google Scholar
Hillenbrand, J. and Sessler, G.M.: Piezoelectricity in cellular electret films. IEEE Trans. Dielectr. Electr. Insul. 7(4), 537542 (2000).Google Scholar
Ryu, J., Vazquez Carazo, A., Uchino, K., and Kim, H.E.: Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. J. Appl. Phys. 40, 4948 (2001).Google Scholar
Scott, J.F.: Applications of magnetoelectrics. J. Mater. Chem. 22, 4567 (2012).Google Scholar
Zhang, S., Leung, C.M., Kuang, W., Or, S.W., and Ho, S.L.: Concurrent operational modes and enhanced current sensitivity in heterostructure of magnetoelectric ring and piezoelectric transformer. J. Appl. Phys. 113, 17C73317C33-3 (2013).Google Scholar
Treloar, L.R.G.: Stresses and birefringence in rubber subjected to general homogeneous strain. Proc. Phys. Soc. 60(2), 135144 (1948).Google Scholar
Liu, L.: On the energy formulations of electrostatics for continuum media. J. Mech. Phys. Solids 61(4), 968990 (2013).Google Scholar
Neugschwandtner, G.S., Schwodiauner, R., Bauer-Gogonea, S., and Bauer, S.: Large piezoelectric effects in charged, heterogeneous fluoropolymer electrets. Appl. Phys. A 70, 14 (2000).Google Scholar
Kasprzyk, R., Motyl, E., Gajewski, J.B., and Pasternak, A.: Piezoelectric properties of nonuniform electrets. J. Electrost. 25, 161166 (1995).Google Scholar
Personal communication with Professor Zhigang Suo and Zoubeida Ounaies.Google Scholar