Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T20:43:32.467Z Has data issue: false hasContentIssue false

Transmission electron microscopy observation and optical property of sol-gel derived LiNbO3 films

Published online by Cambridge University Press:  31 January 2011

K. Terabe
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba-shi, Ibaraki 305, Japan
A. Gruverman
Affiliation:
National Institute for Advanced Interdisciplinary Research, Higashi 1–1-4, Tsukuba-shi, Ibaraki 305, Japan
Y. Matsui
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba-shi, Ibaraki 305, Japan
N. Iyi
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba-shi, Ibaraki 305, Japan
K. Kitamura
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba-shi, Ibaraki 305, Japan
Get access

Abstract

Crystallization behavior, defects, and interface structures of sol-gel derived LiNbO3 films on three kinds of substrates were examined. The nucleation was found to occur epitaxially at the interface between the film and the substrate. The continuous film is formed by coalescence of the island-like crystallites. When sapphire substrate is used, which has large lattice mismatch with the LiNbO3, the resulting film contains a large amount of micropores, twin structures, and misfit dislocations. On the other hand, while LiTaO3 and 5% MgO-doped LiNbO3 substrates with smaller mismatch are used as substrates, the films show no evidence of the formation of dislocations and twins. The film on 5% MgO-doped LiNbO3 substrate shows better optical waveguiding property.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hirano, S. and Kato, K., Adv. Ceram. Mater. 3, 503 (1988).CrossRefGoogle Scholar
2.Hirano, S. and Kato, K., Non, J.-Cryst. Solids 100, 538 (1988).CrossRefGoogle Scholar
3.Terabe, K., Iyi, N., Kitamura, K., and Kimura, S., J. Mater. Res. 10, 1779 (1995).Google Scholar
4.Nashimoto, K., Chima, M. J., McIntyre, P. C., and Rhine, W. E., J. Mater. Res. 10, 2564 (1995).Google Scholar
5.Joshi, V. and Mecartney, M. C., J. Mater. Res. 8, 2668 (1993).CrossRefGoogle Scholar
6.Eichorst, D. J., Payne, D. A., Wilson, S. R., and Howard, K. E., Inorg. Chem. 29, 1458 (1990).CrossRefGoogle Scholar
7.Terabe, K., Iyi, N., and Kimura, S., J. Mater. Sci. 30, 1993 (1995).Google Scholar
8.Nashimoto, K. and Cima, M. J., Mater. Lett. 10, 348 (1991).Google Scholar
9.Ikuhara, Y., Pirouz, P., Heuer, A. H., Yadavalli, S., and Flynn, C. P., Philos. Mag. A 70, 75 (1994).Google Scholar
10.Ikuhara, Y., Jpn. Institute Metals 34, 751 (1995) (in japanese).Google Scholar
11.Schwyn, S., Lehmann, H. W., and Widmer, R., J. Appl. Phys. 72, 1154 (1992).CrossRefGoogle Scholar
12.Lu, Z., Hiskes, R., DiCarolis, S. A., Route, R. K., Feigelson, R. S., Leplingard, F., and Fouqueit, J. E., J. Mater. Res. 9, 2258 (1994).CrossRefGoogle Scholar
13.Yamada, A., Tamada, H., and Saitoh, M., J. Cryst. Growth 132, 48 (1993).CrossRefGoogle Scholar