Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T02:42:07.110Z Has data issue: false hasContentIssue false

Three-dimensional vapor growth mechanism of carbon microcoils

Published online by Cambridge University Press:  31 January 2011

Xiuqin Chen
Affiliation:
Department of Chemical Engineering, Huaqiao University, Fujian 362011, People's Republic of China
T. Saito
Affiliation:
Japan Fine Ceramics Center, 2–4–1 Mutsuno, Atsuta-ku, Nagoya 456–8587, Japan
M. Kusunoki
Affiliation:
Japan Fine Ceramics Center, 2–4–1 Mutsuno, Atsuta-ku, Nagoya 456–8587, Japan
S. Motojima
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Gifu University, Gifu 501–1193, Japan
Get access

Abstract

Carbon microcoils were grown by the Ni-catalyzed pyrolysis of acetylene. The growth patterns and the tip morphologies of the carbon coils are examined in detail, and a growth mechanism is proposed. Basically, six thin fibers grew from a Ni catalyst grain during the initial growth stage immediately followed by the coalescence of the four fibers to form two fibers and then forming double-helixed carbon coils. A small amount of S and O, as well as C and Ni, was observed on the periphery of the cross section of the Ni catalyst grain. On the other hand, S and O were not observed in the central part. The driving force of the coiling of the straight fibers to form carbon coils is considered to be the strong anisotropy of the carbon deposition between different crystal faces.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davis, W.R., Slawson, R.J., and Rigby, G.R., Nature 171, 756 (1953).Google Scholar
2.Davis, W.R., Slowson, R.J., and Rigby, G.R., Trans. Br. Ceram. Soc. 56, 67 (1957).Google Scholar
3.Baker, R.T.K, Barber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J., J. Catal. 26, 51 (1972).Google Scholar
4.Lobo, L.S. and Trimm, D.L., J. Catal. 29, 15 (1973).Google Scholar
5.Baker, R.T.K and Waite, R.J., J. Catal. 37, 1018 (1975).Google Scholar
6.Hillert, M. and Lange, N., Z. Kristallogr. 111, 24 (1958).Google Scholar
7.Calszka, J. and Back, M.H., Carbon 22, 141 (1984).Google Scholar
8.Audier, M. and Coulon, M., Carbon 23, 317 (1985).Google Scholar
9.Dalla Metta, R.A., Piken, A.G., and Shelef, M.J., J. Catal. 40, 173 (1975).Google Scholar
10.Addamiano, A., J. Cryst. Growth 58, 617 (1982).Google Scholar
11.Kang, T-K., Park, S-D., Rhee, C-K., and Kuk, II-H.K, in Proceedings of the 6th Japan-Korea Ceramics Seminar, Kobe, Japan, 1989, p. 249.Google Scholar
12.Motojima, S., Hamamoto, T., Iwanaga, H., J. Cryst. Growth 158, 79 (1996).CrossRefGoogle Scholar
13.Motojima, S., Ueno, S., Hattori, T., and Goto, K., Appl. Phys. Lett. 54, 1001 (1989).Google Scholar
14.Motojima, S., Ueno, S., Hattori, T., and Iwanaga, H., J. Cryst. Growth 96, 383 (1989).Google Scholar
15.Motojima, S., Yamana, T., Araki, T., and Iwanaga, H., J. Electrochem. Soc. 142, 3141 (1995).Google Scholar
16.Vogt, U., Hofmann, H., and Kramer, V., Key Eng. Mater. 89–91, 29 (1994).Google Scholar
17.Motojima, S., Kawaguchi, M., Nozaki, K., and Iwanaga, H., Appl. Phys. Lett. 56, 321 (1990).Google Scholar
18.Motojima, S., Kawaguchi, M., Nozaki, K., and Iwanaga, H., Carbon 29, 379 (1991).Google Scholar
19.Motojima, S., Hasegawa, I., Kawaguchi, M., Nozaki, K., and Iwanaga, H., J. Chem. Vapor Deposition 1, 136 (1992).Google Scholar
20.Motojima, S., Hasegawa, I., Kagaya, S., Asakura, S., Kawaguchi, M., and Iwanaga, H., J. de Phys. IV (C3), 599 (1993).Google Scholar
21.Motojima, S., Hirata, H., and Iwanaga, H., J. Chem. Vapor Deposition 3, 87 (1994).Google Scholar
22.Motojima, S., Hasegawa, I., Asakura, S., Ando, K., and Iwanaga, H., Carbon 33, 1167 (1995).Google Scholar
23.Motojima, S., Itoh, Y., Asakura, S., and Iwanaga, H., J. Mater. Sci. 30, 5049 (1995).Google Scholar
24.Motojima, S., Kagiya, S., and Iwanaga, H., Mater. Sci. Eng. B 34, 47 (1995).Google Scholar
25.Motojima, S., Asakura, S., Hirata, M., and Iwanaga, H., Mater. Sci. Eng. B 34, L9 (1995).Google Scholar
26.Motojima, S., Asakura, S., Kasemura, T., Takeuchi, S., and Iwanaga, H., Carbon 34, 289 (1996).Google Scholar
27.Kawaguchi, M., Nozaki, K., Motojima, S., and Iwanaga, H., J. Cryst. Growth 118, 309 (1992).Google Scholar
28.Amelincks, S., Zhang, X.B., Bernaerts, D., Zhang, X.F., Ivanov, V., and Nagy, J.B., Science 265, 635 (1994).Google Scholar
29.Motojima, S. and Chen, X., J. Appl. Phys. 85, 1 (1999).Google Scholar
30.Yang, R.T. and Chen, J.P., J. Catal. 115, 52 (1989).Google Scholar