Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T07:09:19.651Z Has data issue: false hasContentIssue false

Thermoelectric properties of PbTe thin films prepared by gas evaporation method

Published online by Cambridge University Press:  26 July 2012

Masatoshi Ito
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Won-Son Seo
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Kunihito Koumoto
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Get access

Extract

PbTe thin films with fine grains were successfully fabricated by the gas evaporation method. Thermoelectric properties, i.e., Seebeck coefficient and electrical conductivity, both decreased with decreasing grain size. This was attributed to the decrease in carrier mobility exceeding the increase in carrier concentration with decreasing grain size. It was clarified that the effects of grain boundaries and of oxidation on carrier mobility are considerably large.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vass, R. W. and Andersen, R. M., J. Appl. Phys. 45, 3463 (1974).Google Scholar
2.James, L.W. and Moon, R. I., Appl. Phys. Lett. 26, 467 (1975).CrossRefGoogle Scholar
3.Fischer, A.G., Thin Solid Films 36, 467 (1976).CrossRefGoogle Scholar
4.Barisova, L.D., Phys. Status Solidi A53, K19 (1979).CrossRefGoogle Scholar
5.Mandale, A.B., Thin Solid Films 195, 15 (1991).Google Scholar
6.Kumar, A.V. and Chaudhuri, A. K., Czech. J. Phys. B31, 302 (1981).CrossRefGoogle Scholar
7.Zemel, J. N., Jensen, J.D., and Schoolar, R. B., Phys. Rev. 140 (1A), A330 (1965).Google Scholar
8.Joraide, A.A., J. Mater. Sci. 30, 744 (1995).CrossRefGoogle Scholar
9.Sure, Y., Lee, Y. H., Morimoto, H., Koyanagi, T., Matsubara, K., and Kawamoto, A., Proc. of 12th ICTEC (1993), p. 248.Google Scholar
10.Rowe, D.M. and Bhandari, C.M., Proc. of 6th ICTEC (1987), p. 43.Google Scholar
11.Kimoto, K., Kamiya, Y., Nonoyama, M., and Ueda, R., Jpn. J. Appl. Phys. 2, 702 (1963);CrossRefGoogle Scholar
Kaito, C., Jpn. J. Appl. Phys. 24, 261 (1985);CrossRefGoogle Scholar
Takeuchi, M., Inoue, K., and Ozawa, S., Appl. Surf. Sci. 33/34, 905 (1988).CrossRefGoogle Scholar
12.Hirai, H., Nakano, Y., Toshima, N., and Adachi, K., Chem. Lett., 905 (1976).Google Scholar
13.Mazdiyasni, K.S., Am. Ceram. Soc. Bull. 63, 591 (1984).Google Scholar
14.Zhao, D., Qu, Z., and Pan, X., J. Vac. Sci. Technol. A14 (4), 2547 (1996).Google Scholar
15.Takeuchi, M., Watanabe, Y., and Ozawa, S., Appl. Surf. Sci. 48/49, 526 (1991).CrossRefGoogle Scholar
16.Saito, Y., Mihama, K., and Uyeda, R., Jpn. J. Appl. Phys. 19, 1603 (1980).CrossRefGoogle Scholar
17.Granqvist, C.G. and Hunderi, O., J. Appl. Phys. 51, 1751 (1980).CrossRefGoogle Scholar
18.Bolkov, Yu. A. and Kutasov, V. A., Sov. Phys. Solid State 29 (5), 924 (1987).Google Scholar
19.Das, V.D. and Bhat, K.S., J. Appl. Phys. 54 (11), 6641 (1983).CrossRefGoogle Scholar
20.Gudkin, T.S., Drabkin, I. A., Kaidanov, V. I., and Sterlyadkina, G., Sov. Phys. Semicond. 8, 1453 (1975).Google Scholar