Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T21:59:18.030Z Has data issue: false hasContentIssue false

Thermal Modification of Microstructures and Grain Boundaries in Silicon Carbide

Published online by Cambridge University Press:  31 January 2011

Xiao Feng Zhang
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
Lutgard C. De Jonghe
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720
Get access

Abstract

Polycrystalline SiC samples hot pressed with aluminum, boron, and carbon sintering additions (ABC-SiC) were characterized using transmission electron microscopy. The study focused on the effects of high-temperature treatment on microstructure. Three temperatures, at which considerable microstructural changes took place, were found to be critical. At a threshold temperature of approximately 1000°C, 1-nm-wide, amorphous intergranular films started to crystallize. At approximately 1300°C, lattice diffusion in SiC grains resulted in nanoprecipits, which could diffuse into grain boundaries and significantly altered composition. Quantitative microanalysis revealed doubled Al content in intergranular films after annealing at 1300°C. Except for crystallization in intergranular films and nano-precipitation in matrix grains, microstructure remained stable until 1600°C, when microstructural changes with volatile features occurred. A brief holding at 1900°C brought marked changes in microstructure, including structural change in intergranular films, dissolved nanoprecipitates, unit cell dilation, and cracking. The results indicate that ABC-SiC is highly promising in structural applications at up to 1500°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mitchell, T. Jr, Dejonghe, L.C., MoberlyChan, W.J., and Ritchie, R.O., J. Am. Ceram. Soc. 78, 97 (1995).CrossRefGoogle Scholar
2.Becher, P.F., J. Am. Ceram. Soc. 74, 255 (1991).CrossRefGoogle Scholar
3.Becher, P.F., Sun, E.Y., Plucknett, K.P., Alexander, K.B., Hsueh, C.H., Lin, H.T., Waters, S.B., and Westmoreland, C.G., J. Am. Ceram. Soc. 81, 2821 (1998).CrossRefGoogle Scholar
4.Cao, J.J., MoberlyChan, W.J., Jonghe, L.C. De, Gilbert, C.J., and Ritchie, R.O., J. Am. Ceram. Soc. 79, 461 (1996).CrossRefGoogle Scholar
5.Padture, N.P., In Situ-Toughened Silicon Carbide, J. Am. Ceram. Soc. 77, 519 (1994).CrossRefGoogle Scholar
6.Lange, F.F., J. Mater. Sci. 10, 314 (1975).CrossRefGoogle Scholar
7.Hamminger, R., Grathwohl, G., and Thummler, F., J. Mater. Sci. 18, 353 (1983).CrossRefGoogle Scholar
8.Sigl, L. and Kleebe, H-J., J. Am. Ceram. Soc. 76, 773 (1993).CrossRefGoogle Scholar
9.MoberlyChan, W.J., Cao, J.J., and Jonghe, L.C. De, Acta Mater. 46, 1625 (1998).CrossRefGoogle Scholar
10.MoberlyChan, W.J. and Jonghe, L.C. De, Acta Mater. 46, 2471 (1998).CrossRefGoogle Scholar
11.Zhang, X.F., Sixta, M.E., and Jonghe, L.C. De, J. Am. Ceram. Soc. 83, 2813 (2000).CrossRefGoogle Scholar
12.Huang, J-L., Hurford, A.C., Cutler, R.A., and Virkar, A.V., J. Mater. Sci. Lett. 21, 1448 (1986).Google Scholar
13.Misra, A.K., J. Am. Ceram. Soc. 74, 345 (1991).CrossRefGoogle Scholar
14.Gilbert, C.J., Cao, J.J., Jonghe, L.C. De, and Ritchie, R.O., J. Am. Ceram. Soc. 80, 2253 (1997).CrossRefGoogle Scholar
15.Faber, K.T. and Evans, A.G., Acta Metall. 31, 565 (1983).CrossRefGoogle Scholar
16.Faber, K.T. and Evans, A.G., Acta Metall. 31, 577 (1983).CrossRefGoogle Scholar
17.Becher, P.F., Hsueh, C.H., Angelini, P., and Tiegs, T.N., J. Am. Ceram. Soc. 71, 1050 (1988).CrossRefGoogle Scholar
18.Chen, D., Gilbert, C.J., Zhang, X.F., and Ritchie, R.O., Acta Mater. 48, 659 (2000).CrossRefGoogle Scholar
19.Chen, D., Zhang, X.F., and Ritchie, R.O., J. Am. Ceram. Soc. 83, 2079 (2000).CrossRefGoogle Scholar
20.Chen, D., Sixta, M.E., Zhang, X.F., Jonghe, L.C. De, and Ritchie, R.O., Acta Mater. 48, 4599 (2000).CrossRefGoogle Scholar
21.Zhang, X.F., Sixta, M.E., and Jonghe, L.C. De, J. Mater. Sci. 36, 5447 (2001).CrossRefGoogle Scholar
22.Ritchie, R.O., Chen, D., and Zhang, X.F., Int. J. Mater. Prod. Tech. 1, 331 (2001).Google Scholar
23.Zhang, X.F., Sixta, M.E., and Jonghe, L.C. De, Defect Diffusion Forum 186–187, 45 (2000).CrossRefGoogle Scholar
24.Sixta, M.E., Zhang, X.F., and Jonghe, L.C. De, J. Am. Ceram. Soc. 84, 2022 (2001).CrossRefGoogle Scholar
25.Zhang, X.F., Lee, G.Y., Chen, D., Ritchie, R.O., and Jonghe, L.C. De, J. Am. Ceram. Soc. 86, 1370 (2003).CrossRefGoogle Scholar
26.Nagano, T., Kaneko, K., Zhan, G-D., and Mitomo, M., J. Am. Ceram. Soc. 83, 2781 (2000).CrossRefGoogle Scholar
27.Zhang, X.F., Yang, Q., Jonghe, L.C. De, and Zhang, Z., J. Microsc. 207, 58 (2002).CrossRefGoogle Scholar
28.Zhang, X.F., Sixta, M.E., and Jonghe, L.C. De, J. Am. Ceram. Soc. 84, 813 (2001).CrossRefGoogle Scholar
29.Ruska, J., Gauckler, L.J., Lorenz, J.L., and Rexer, H.U.. J. Mater. Sci. 14, 2013 (1979).CrossRefGoogle Scholar
30.Zhang, X.F., Yang, Q., and Jonghe, L.C. De, Acta Mater. 51, 3849 (2003).CrossRefGoogle Scholar
31.Ribes, H., Suery, M., L'Esperance, G., and Legoux, J.G., Metall. Trans. 21A, 2489 (1990).CrossRefGoogle Scholar
32.Cutler, I.B., Miller, P.D., Rafaniello, W., Park, H.K., Thompson, D.P., and Jack, K.H., Nature 275, 434 (1978).CrossRefGoogle Scholar
33.Zhan, G-D., Xie, R-J., Mitomo, M., and Kim, Y-W., J. Am. Ceram. Soc. 84, 945 (2001).CrossRefGoogle Scholar
34.Zhan, G-D., Ikuhara, Y., Mitomo, M., Xie, R-J., Sakuma, T., and Mukherjee, A.K., J. Am. Ceram. Soc. 85, 430 (2002).CrossRefGoogle Scholar
35.Rouxel, T., Soraru, G-D., and Vicens, J., J. Am. Ceram. Soc. 84, 1052 (2001).CrossRefGoogle Scholar
36.Lihrmann, J.M., Zambetakis, T., and Daire, M., J. Am. Ceram. Soc. 72, 1704 (1989).CrossRefGoogle Scholar