Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T14:33:47.443Z Has data issue: false hasContentIssue false

Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

Published online by Cambridge University Press:  20 May 2015

Ramez Cheaito
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
Caroline S. Gorham
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
Amit Misra
Affiliation:
Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Khalid Hattar*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Patrick E. Hopkins*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The progressive build up of fission products inside different nuclear reactor components can lead to significant damage of the constituent materials. We demonstrate the use of time-domain thermoreflectance (TDTR), a nondestructive thermal measurement technique, to study the effects of radiation damage on material properties. We use TDTR to report on the thermal conductivity of optimized ZIRLO, a material used as fuel cladding in nuclear reactors. We find that the thermal conductivity of optimized ZIRLO is 10.7 ± 1.8 W m−1 K−1 at room temperature. Furthermore, we find that the thermal conductivities of copper–niobium nanostructured multilayers do not change with helium ion irradiation doses of 1015 cm−2 and ion energy of 200 keV, demonstrating the potential of heterogeneous multilayer materials for radiation tolerant coatings. Finally, we compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Our results demonstrate that TDTR can be used to quantify depth dependent damage.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

Current Address: Carnegie Mellon University, Mechanical Engineering, Pittsburgh, PA 15213, USA

Contributing Editor: Joel Ribis

d)

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

References

REFERENCES

Matzke, H.J.: Radiation damage in nuclear materials. Nucl. Instrum. Methods Phys. Res., Sect. B 65, 3039 (1992).CrossRefGoogle Scholar
Yvon, P. and Carr, F.: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217222 (2009). Nuclear Materials III Proceedings of the E-MRS 2008 Spring Meeting: Third Symposium N on Nuclear Materials.CrossRefGoogle Scholar
Was, G.S.: Fundamentals of Radiation Materials Science (Springer, Germany, 2007).Google Scholar
David, L., Goms, S., Carlot, G., Roger, J-P., Fournier, D., Valot, C., and Raynaud, M.: Characterization of thermal conductivity degradation induced by heavy ion irradiation in ceramic materials. J. Phys. D: Appl. Phys. 41, 035502 (2008).CrossRefGoogle Scholar
Suud, Z. and Anshari, R.: Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident. AIP Conf. Proc. 1448, 315327 (2012).CrossRefGoogle Scholar
NRC Information Notice 2009-23, Supplement 1: Nuclear Fuel Thermal Conductivity Degradation, Oct 26, 2012.Google Scholar
Gofryk, K., Du, S., Stanek, C.R., Lashley, J.C., Liu, X-Y., Schulze, R.K., Smith, J.L., Safarik, D.J., Byler, D.D., McClellan, K.J., Uberuaga, B.P., Scott, B.L., and Andersson, D.A.: Anisotropic thermal conductivity in uranium dioxide. Nat. Commun. 5, 4551 (2014).CrossRefGoogle ScholarPubMed
Tanabe, T.: Radiation damage of graphite—Degradation of material parameters and defect structures. Phys. Scr. 1996, 7 (1996).CrossRefGoogle Scholar
Snead, L.L., Zinkle, S.J., and White, D.P.: Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation. J. Nucl. Mater. 340, 187202 (2005).CrossRefGoogle Scholar
Snead, L.L.: Accumulation of thermal resistance in neutron irradiated graphite materials. J. Nucl. Mater. 381, 7682 (2008). Proceedings of the Seventh and Eighth International Graphite Specialists Meetings (INGSM).CrossRefGoogle Scholar
Crocombette, J-P. and Proville, L.: Thermal conductivity degradation induced by point defects in irradiated silicon carbide. Appl. Phys. Lett. 98, 191905 (2011).CrossRefGoogle Scholar
Weisensee, P.B., Feser, J.P., and Cahill, D.G.: Effect of ion irradiation on the thermal conductivity of UO2 and U3O8 epitaxial layers. J. Nucl. Mater. 443, 212217 (2013).CrossRefGoogle Scholar
Men, D., Patel, M.K., Usov, I.O., Toiammou, M., Monnet, I., Pivin, J.C., Porter, J.R., and Mecartney, M.L.: Radiation damage in multiphase ceramics. J. Nucl. Mater. 443, 120127 (2013).CrossRefGoogle Scholar
Nguyen, B.N., Gao, F., Henager, C.H. Jr., and Kurtz, R.J.: Prediction of thermal conductivity for irradiated SiC/SiC composites by informing continuum models with molecular dynamics data. J. Nucl. Mater. 448, 364372 (2014).CrossRefGoogle Scholar
Katoh, Y., Ozawa, K., Shih, C., Nozawa, T., Shinavski, R.J., Hasegawa, A., and Snead, L.L.: Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects. J. Nucl. Mater. 448, 448476 (2014).CrossRefGoogle Scholar
Ben-Belgacem, M., Richet, V., Terrani, K.A., Katoh, Y., and Snead, L.L.: Thermo-mechanical analysis of LWR SiC/SiC composite cladding. J. Nucl. Mater. 447, 125142 (2014).CrossRefGoogle Scholar
Cabrero, J., Audubert, F., Pailler, R., Kusiak, A., Battaglia, J., and Weisbecker, P.: Thermal conductivity of SiC after heavy ions irradiation. J. Nucl. Mater. 396, 202207 (2010).CrossRefGoogle Scholar
Horne, K., Ban, H., Mandelis, A., and Matvienko, A.: Photothermal radiometry measurement of thermophysical property change of an ion-irradiated sample. Mater. Sci. Eng., B 177, 164167 (2012).CrossRefGoogle Scholar
Jensen, C., Chirtoc, M., Horny, N., Antoniow, J.S., Pron, H., and Ban, H.: Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods. J. Appl. Phys. 114, 133509 (2013).CrossRefGoogle Scholar
Khafizov, M., Yablinsky, C., Allen, T.R., and Hurley, D.H.: Measurement of thermal conductivity in proton irradiated silicon. Nucl. Instrum. Methods Phys. Res. Sect. B 325, 1114 (2014).CrossRefGoogle Scholar
Pakarinen, J., Khafizov, M., He, L., Wetteland, C., Gan, J., Nelson, A.T., Hurley, D.H., El-Azab, A., and Allen, T.R.: Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation. J. Nucl. Mater. 454, 283289 (2014).CrossRefGoogle Scholar
Paddock, C.A. and Eesley, G.L.: Transient thermoreflectance from thin metal films. J. Appl. Phys. 60, 285290 (1986).CrossRefGoogle Scholar
Cahill, D.G.: Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004).CrossRefGoogle Scholar
Schmidt, A.J., Chen, X., and Chen, G.: Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).CrossRefGoogle ScholarPubMed
Hopkins, P.E.: Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 2013, 682586 (2013).CrossRefGoogle Scholar
Oh, D-W., Ravichandran, J., Liang, C-W., Siemons, W., Jalan, B., Brooks, C.M., Huijben, M., Schlom, D.G., Stemmer, S., Martin, L.W., Majumdar, A., Ramesh, R., and Cahill, D.G.: Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Appl. Phys. Lett. 98, 221904 (2011).CrossRefGoogle Scholar
Tong, T., Fu, D., Levander, A.X., Schaff, W.J., Pantha, B.N., Lu, N., Liu, B., Ferguson, I., Zhang, R., Lin, J.Y., Jiang, H.X., Wu, J., and Cahill, D.G.: Suppression of thermal conductivity in InxGa1-xN alloys by nanometer-scale disorder. Appl. Phys. Lett. 102, 121906 (2013).CrossRefGoogle Scholar
Gorham, C.S., Hattar, K., Cheaito, R., Duda, J.C., Gaskins, J.T., Beechem, T.E., Ihlefeld, J.F., Biedermann, L.B., Piekos, E.S., Medlin, D.L., and Hopkins, P.E.: Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces. Phys. Rev. B 90, 024301 (2014).CrossRefGoogle Scholar
Smeeton, T.M., Kappers, M.J., Barnard, J.S., Vickers, M.E., and Humphreys, C.J.: Electron-beam-induced strain within InGaN quantum wells: False indium cluster detection in the transmission electron microscope. Appl. Phys. Lett. 83, 54195421 (2003).CrossRefGoogle Scholar
Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399409 (2004). International Wuhan Symposium on Advanced Electron Microscopy.CrossRefGoogle ScholarPubMed
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 268, 18181823 (2010). 19th International Conference on Ion Beam Analysis.CrossRefGoogle Scholar
Hopkins, P.E., Serrano, J.R., Phinney, L.M., Kearney, S.P., Grasser, T.W., and Harris, C.T.: Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating. J. Heat Transfer 132, 081302 (2010).CrossRefGoogle Scholar
Wang, Y., Park, J.Y., Koh, Y.K., and Cahill, D.G.: Thermoreflectance of metal transducers for time-domain thermoreflectance. J. Appl. Phys. 108, 043507 (2010).CrossRefGoogle Scholar
Ghotbi, M., Ebrahim-Zadeh, M., Majchrowski, A., Michalski, E., and Kityk, I.V.: High-average-power fem-tosecond pulse generation in the blue using BiB3O6 . Opt. Lett. 29, 25302532 (2004).CrossRefGoogle ScholarPubMed
Eesley, G.L.: Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 21442151 (1986).CrossRefGoogle ScholarPubMed
Elsayed-Ali, H.E., Norris, T.B., Pessot, M.A., and Mourou, G.A.: Time-resolved observation of electron-phonon relaxation in copper. Phys. Rev. Lett. 58, 12121215 (1987).CrossRefGoogle ScholarPubMed
Giri, A., Foley, B.M., and Hopkins, P.E.: Influence of hot electron scattering and electron-phonon interactions on thermal boundary conductance at metal/non-metal interfaces. J. Heat Transfer 136, 092401 (2014).CrossRefGoogle Scholar
Tas, G., Loomis, J.J., Maris, H.J., Bailes, A.A., and Seiberling, L.E.: Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation. Appl. Phys. Lett. 72, 22352237 (1998).CrossRefGoogle Scholar
Losego, M.D., Grady, M.E., Sottos, N.R., Cahill, D.G., and Braun, P.V.: Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502506 (2012).CrossRefGoogle ScholarPubMed
Thomsen, C., Strait, J., Vardeny, Z., Maris, H.J., Tauc, J., and Hauser, J.J.: Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 53, 989992 (1984).CrossRefGoogle Scholar
Thomsen, C., Grahn, H.T., Maris, H.J., and Tauc, J.: Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 41294138 (1986).CrossRefGoogle ScholarPubMed
Huxtable, S., Cahill, D.G., Fauconnier, V., White, J.O., and Zhao, J-C.: Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3, 298301 (2004).CrossRefGoogle ScholarPubMed
Zheng, X., Cahill, D.G., and Zhao, J-C.: Thermal conductivity imaging of thermal barrier coatings. Adv. Eng. Mater. 7, 622626 (2005).CrossRefGoogle Scholar
Koh, Y.K., Singer, S.L., Kim, W., Zide, J.M.O., Lu, H., Cahill, D.G., Majumdar, A., and Gossard, A.C.: Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105, 054303 (2009).CrossRefGoogle Scholar
Hopkins, P.E., Duda, J.C., Clark, S.P., Hains, C.P., Rotter, T.J., Phinney, L.M., and Balakrishnan, G.: Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces. Appl. Phys. Lett. 98, 161913 (2011).CrossRefGoogle Scholar
Allen, T.R., Konings, R.J.M., and Motta, A.T.: Corrosion of zirconium alloys. In Comprehensive Nuclear Materials, Konings, R.J.M. ed.; Elsevier: Oxford, 2012; pp. 4968.CrossRefGoogle Scholar
Kim, K-T.: Evolutionary developments of advanced PWR nuclear fuels and cladding materials. Nucl. Eng. Des. 263, 5969 (2013).CrossRefGoogle Scholar
Foster, J.P., Yueh, K., and Comstock, R.J.: Zirlo cladding improvement. J. ASTM Int. 5, 113 (2007).Google Scholar
Wikmark, G., Hallstadius, L., and Yueh, K.: Cladding to sustain corrosion, creep and growth at high burn-ups. Nucl. Eng. Technol. 41, 143148 (2009). Special Issue on the Water Reactor Fuel Performance Meeting 2008.CrossRefGoogle Scholar
TEM Data taken by Evans Analytical Group. http://www.eag.com/.Google Scholar
Misra, A., Hoagland, R.G., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 10211028 (2004).CrossRefGoogle Scholar
Zhernenkov, M., Gill, S., Stanic, V., DiMasi, E., Kisslinger, K., Baldwin, J.K., Misra, A., Demkowicz, M.J., and Ecker, L.: Design of radiation resistant metallic multilayers for advanced nuclear systems. Appl. Phys. Lett. 104, 241906 (2014).CrossRefGoogle Scholar
Höchbauer, T., Misra, A., Hattar, K., and Hoagland, R.G.: Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 98, 123516 (2005).CrossRefGoogle Scholar
Hattar, K., Demkowicz, M., Misra, A., Robertson, I., and Hoagland, R.: Arrest of He bubble growth in Cu-Nb multilayer nanocomposites. Scr. Mater. 58, 541544 (2008).CrossRefGoogle Scholar
Demkowicz, M.J., Bhattacharyya, D., Usov, I., Wang, Y.Q., Nastasi, M., and Misra, A.: The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces. Appl. Phys. Lett. 97, 161903 (2010).CrossRefGoogle Scholar
Demkowicz, M.J., Misra, A., and Caro, A.: The role of interface structure in controlling high helium concentrations. Curr. Opin. Solid State Mater. Sci. 16, 101108 (2012). Material Challenges for Advanced Nuclear Power Systems.CrossRefGoogle Scholar
Gundrum, B., Cahill, D., and Averback, R.: Thermal conductance of metal-metal interfaces. Phys. Rev. B 72, 15 (2005).CrossRefGoogle Scholar
Zhang, X., Li, N., Anderoglu, O., Wang, H., Swadener, J.G., Höchbauer, T., Misra, A., and Hoagland, R.G.: Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 261, 11291132 (2007).CrossRefGoogle Scholar
Birtcher, R.C. and Blewitt, T.H.: Damage saturation effects on volume and resistivity changes induced by fission-fragment irradiation of copper. J. Nucl. Mater. 98, 6370 (1981).CrossRefGoogle Scholar
Wilson, R. and Cahill, D.: Experimental validation of the interfacial form of the Wiedemann-Franz law. Phys. Rev. Lett. 108, 255901 (2012).CrossRefGoogle ScholarPubMed
Cheaito, R., Hattar, K., Gaskins, J.T., Yadav, A.K., Duda, J.C., Beechem, T.E., Ihlefeld, J.F., Piekos, E.S., Baldwin, J.K., Misra, A., and Hopkins, P.E.: Thermal flux limited electron Kapitza conductance in copper-niobium multilayers. Appl. Phys. Lett. 106, 093114 (2015).CrossRefGoogle Scholar
Capinski, W.S. and Maris, H.J.: Improved apparatus for picosecond pump-and-probe optical measurements. Rev. Sci. Instrum. 67, 27202726 (1996).CrossRefGoogle Scholar
Schmidt, A.J., Cheaito, R., and Chiesa, M.: A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009).CrossRefGoogle ScholarPubMed
Malen, J.A., Baheti, K., Tong, T., Zhao, Y., Hudgings, J.A., and Majumdar, A.: Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat Transfer 133, 081601 (2011).CrossRefGoogle Scholar