Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:44:48.979Z Has data issue: false hasContentIssue false

Texture in Ti/Al and Nb/Al multilayer thin films: Role of Cu

Published online by Cambridge University Press:  31 January 2011

G. Lucadamo
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
K. Barmak*
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
K. P. Rodbell
Affiliation:
T.J. Watson Research Center, IBM, P.O. Box 218, Yorktown Heights, New York 10598
*
b)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

Fiber texture in Ti/Al and Nb/Al polycrystalline multilayer thin films, with bilayer thicknesses (Λ) ranging from 20–333 nm and having a fixed stoichiometry of 1/3, has been investigated by using x-ray pole figures and transmission electron microscopy. Two sets of films were deposited; one set contained pure Al and the other Al–1.0 wt% Cu. The results indicated that texture was strengthened by the formation of a coherent superlattice for the Nb/pure-Al film with the smallest bilayer thickness. By contrast, the texture in Ti/pure-Al films with a similar period was not as strong. The texture also decreased with increasing Λ for both the Ti/pure-Al and Nb/pure-Al films. An increase in the width of the Al (111) peak and an offset of the fiber axis from the substrate normal of 5–8° was observed in the Λ = 333 nm films prepared by using Al–1.0 wt% Cu. The decrease in texture on addition of Cu to Al was attributed primarily to an increase in interlayer roughness as a consequence of reduction in the Al(Cu) grain size. These observations were interpreted in the context of structure zone and dynamic roughness models of film growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vaidya, S. and Sinha, A.K., Thin Solid Films 75, 253 (1981).CrossRefGoogle Scholar
2.Knorr, D.B., Rodbell, K.P., and Tracy, D.P., in Materials Reliability Issues in Microelectronics, edited by Lloyd, J.R., Ho, P.S., Sah, C.T., and Yost, F. (Mater. Res. Soc. Symp. Proc. 225, Pittsburgh, PA, 1991), p. 21.Google Scholar
3.Knorr, D.B., Tracy, D.P., and Rodbell, K.P., Appl. Phys. Lett. 59, 3241 (1991).CrossRefGoogle Scholar
4.Knorr, D.B., in Materials Reliability in Microelectronics, III, edited by Rodbyl, K.P., Filter, W.F., Frost, H.J., and Ho, P.S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 75.Google Scholar
5.Tracy, D.P., Knorr, D.B., and Rodbell, K.P., J. Appl. Phys. 76, 2671 (1994).CrossRefGoogle Scholar
6.Knorr, D.B. and Rodbell, K.P., J. Appl. Phys. 79, 2409 (1996).CrossRefGoogle Scholar
7.Knorr, D.B., Merchant, S.M., and Bilberger, M.A., J. Vac. Sci. Technol. B 16, 2734 (1998).CrossRefGoogle Scholar
8.Ting, L.M. and Hong, Q-Z., in Materials Reliability in Microelectronics VI, edited by Filter, W.F., Clement, J.J., Oates, A.S., Rosenberg, R., and Lenahan, P.M. (Mater. Res. Soc. Symp. Proc. 428, Pittsburgh, PA, 1996), p. 75.Google Scholar
9.Onoda, H., Touchi, K., and Hashimoto, K., Jpn. J. Appl. Phys. Pt. 2 34, L1037 (1995).CrossRefGoogle Scholar
10.Onoda, H., Narita, T., Touchi, K., and Hashimoto, K., J. Vac. Sci. Technol. B 14, 2645 (1996).CrossRefGoogle Scholar
11.Rodbell, K.P., Svilan, V., Gignac, L.M., Dehaven, P.W., Murphy, R.J., and Licata, T.J., in Materials Reliability in Microelectronics VI, edited by Filter, W.F., Clement, J.J., Oates, A.S., Rosenberg, R., and Lenahan, P.M. (Mater. Res. Soc. Symp. Proc. 428, Pittsburgh, PA, 1996), p. 261.Google Scholar
12.Murray, C.E., Ph.D. Thesis, Northwestern University, Chicago, IL (2000).Google Scholar
13.Michaelsen, C., Wöhlert, S., and Bormann, R., in Polycrystalline Thin Films: Structure, Texture, Properties, and Applications, edited by Barmak, K., Parker, M.A., Floro, J.A., Sinclair, R., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 205.Google Scholar
14.Adamik, M., Tomov, I., and Barna, P.B., Solid State Phenom. 56, 213 (1997).CrossRefGoogle Scholar
15.Adamik, M., Barna, P.B., and Tomov, I., Surf. Coat. Technol. 100–101, 333 (1998).Google Scholar
16.Barmak, K., Michaelsen, C., Vivekanand, S., and Ma, F., Phil. Mag. A 77, 167 (1998).CrossRefGoogle Scholar
17.McWhan, D.B., Gurvich, M., Rowell, J.M., and Walker, L.R., J. Appl. Phys. 54, 3886 (1983).CrossRefGoogle Scholar
18.Baumann, J.R., Liebemann, E.K., Simon, M., and Bucher, E., Phys. Rev. B 45, 3778 (1992).CrossRefGoogle Scholar
19.Lucadamo, G., Watanabe, M., Barmak, K., Williams, D.B., Michaelsen, C., and Alani, R., Phil. Mag. A 79, 1423 (1999).CrossRefGoogle Scholar
20.Lucadamo, G., Barmak, K., Hyun, S., Cabral, C. Jr, and Lavoie, C., Mat. Lett. 39, 268 (1999).CrossRefGoogle Scholar
21.Lucadamo, G., Barmak, K., Carpenter, D.T., Lavoie, C., Cabral, C. Jr., Michaelsen, C., and Rickman, J.M., in Polycrystalline Metal and Magnetic Thin Films, edited by Laughlin, D.E., Rodbell, K.P., Thomas, O., and Zhang, B. (Mater. Res. Soc. Symp. Proc. 562, Pittsburgh, PA, 1999), p. 159.Google Scholar
22.Lucadamo, G., Barmak, K., and Hyun, S., Thermochim. Acta 348, 53 (2000).CrossRefGoogle Scholar
23.Lucadamo, G., Ph.D. Thesis, Lehigh University, Bethlehem, PA (1999).Google Scholar
24.Joint Committeeon Powder Diffraction Standards, Powder Diffraction File, Inorganic Index (Swarthmore, PA: International Center for Diffraction Data) (1998).Google Scholar
25.Michaelsen, C., Wolhert, S., Bormann, R., and Barmak, K., in Thermodynamics and Kinetics of Phase Transformations, edited by Im, J.S., Park, B., Greer, A.L., and Stephenson, G.B. (Mater. Res. Soc. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 245.Google Scholar
26.Michaelsen, C. (private communication).Google Scholar
27.Bonevich, J., van Heerden, D., and Josell, D., J. Mater. Res. 14, 1977 (1999).CrossRefGoogle Scholar
28.Savage, D.E., Schimke, N., Phang, Y-H., and Lagally, M.G., J. Appl. Phys. 71, 3283 (1992).CrossRefGoogle Scholar
29.Kominami, S., Yamada, H., Miyamoto, N., and Takagi, K., IEEE Trans. Appl. Supercond. 3, 2182 (1993).CrossRefGoogle Scholar
30.Thomas, C.D., Ulmer, M.P., and Ketterson, J.B., J. Appl. Phys. 84, 364 (1998).CrossRefGoogle Scholar
31.Srolovitz, D.J., Mazor, A., and Bukiet, B.G., J. Vac. Soc. A 6, 2371 (1988).CrossRefGoogle Scholar
32.Lita, A.E. and Sanchez, J.E. Jr., J. Appl. Phys. 85, 876 (1999).CrossRefGoogle Scholar
33.Lita, A.E. and Sanchez, J.E. Jr., Phys. Rev. B 61, 7693 (2000).CrossRefGoogle Scholar
34.Family, F. and Viscek, T., J. Phys. A 18, 75 (1985).Google Scholar
35.Esposito, A. and Monticone, E., Phil. Mag. B 80, 1133 (2000).CrossRefGoogle Scholar
36.Grovenor, C.R.M., Hentzell, H.T.G., and Smith, D.A., Acta Metall. 32, 773 (1984).CrossRefGoogle Scholar
37.Barna, P.B. and Adamik, M., Thin Solid Films 317, 27 (1998).CrossRefGoogle Scholar
38.Cahn, J.W., Acta Metall. 10, 789 (1962).CrossRefGoogle Scholar
39.Demianczuk, D.W. and Aust, K.T., Acta Metall. 23, 1149 (1975).CrossRefGoogle Scholar
40.Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1964), p. 328.Google Scholar
41.Copel, M., Rodbell, K.P., and Tromp, R.M., Appl. Phys. Lett. 68, 1625 (1996).CrossRefGoogle Scholar
42.Solak, H.H., Lorusso, G.F., Singh-Gasson, S., and Cerrina, F., Appl. Phys. Lett. 74, 22 (1999).CrossRefGoogle Scholar
43.Barmak, K., Coffey, K.R., Rudman, D.A., and Foner, S., J. Appl. Phys. 67, 3780 (1990).CrossRefGoogle Scholar