Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T18:08:11.890Z Has data issue: false hasContentIssue false

Ternary atom location in L12-structured intermetallic phases: Al62.5+XTi25−Y(Fe, Ni, or Cu)12.5–Z using ALCHEMI

Published online by Cambridge University Press:  31 January 2011

Y. Ma*
Affiliation:
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo 3, Norway
J. Gj⊘nnes
Affiliation:
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo 3, Norway
*
a)Present address: 264 Materials Research Laboratory, University of Illinois at Urbana–Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801.
Get access

Abstract

The site occupancy of ternary atoms in three L12-structured intermetallic phases, Al62.5+XTi25−Y(Fe, Ni, or Cu)12.5–Z found in three laser processed intermetallic systems was studied by the axial ALCHEMI (Atom Location by Channeling Enhanced Microanalysis). The ternary atoms in all three intermetallic phases were found preferentially to occupy the Al sublattices, although slight differences in occupancy among them were detected. A simple extrapolation method of calculating delocalization correction factors for various characteristic x-ray emissions was described, which was proved to be practically useful in ALCHEMI analyses. In order to compare the axial ALCHEMI analysis with the planar ALCHEMI in an experimental perspective, the planar ALCHEMI analysis was also carried out on the phase alloyed with Cu, which showed results in broad agreement with those of the axial ALCHEMI analysis on the same phase. Nevertheless, owing to much weaker channeling effects the planar ALCHEMI analysis gave apparently worse statistics in its results. In the end, various sources of errors in the ALCHEMI analyses at the present stage are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Umakoshi, Y., Yamaguchi, M., Yamane, T., and Hirano, T., Philos. Mag. 58, 651 (1988).CrossRefGoogle Scholar
2.Djanarthany, S., Servant, C., and Pennelle, R., J. Mater. Res. 6, 969 (1991).CrossRefGoogle Scholar
3.Yamaguchi, M., in High Temperature Intermetallics (Royal Society, London, 1991), p. 15.Google Scholar
4.Kumar, K. S. and Pickens, J. R., Scripta Metall. 22, 1015 (1988).CrossRefGoogle Scholar
5.Gengxiang, Hu, Shipu, Chen, Xiaohua, Wu, and Xiaofu, Chen, J. Mater. Res. 6, 957 (1991).CrossRefGoogle Scholar
6.Ma, Y., Arnesen, T., Gjønnes, J., and Taftø, J., J. Mater. Res. 7, 1722 (1992).CrossRefGoogle Scholar
7.George, E. P., Porter, W. D., Henson, H. M., Oliver, W. C., and Oliver, B. F., J. Mater. Res. 4, 78 (1989).CrossRefGoogle Scholar
8.George, E. P., Horton, J. A., Porter, W. D., and Schneibel, J. H., J. Mater. Res. 5, 1639 (1990).CrossRefGoogle Scholar
9.Borrman, G., Phys. Z. 42, 157 (1941).Google Scholar
10.Taftø, J., Naturforsch, Z., Teil A34, 452 (1979).Google Scholar
11.Spence, J. C. H. and Taftø, J., J. Microsc. 130, 147 (1983).CrossRefGoogle Scholar
12.Taftø, J. and Spence, J. C. H., Ultramicroscopy 9, 243 (1982).CrossRefGoogle Scholar
13.Taftø, J. and Gjønnes, J., Ultramicroscopy 26, 97 (1988).CrossRefGoogle Scholar
14.Krishnan, K. M., Rez, P., and Thomas, G., Acta Cryst. B41, 396 (1985).CrossRefGoogle Scholar
15.Krishnan, K. M., Ultramicroscopy 24, 125 (1988).CrossRefGoogle Scholar
16.Rossouw, C. J., Turner, P. S., and White, T. J., Philos. Mag. B57, 209 (1988).CrossRefGoogle Scholar
17.Pennycook, S. J., Scan. Microsoc. 2, 21 (1988).Google Scholar
18.Pennycook, S. J., Ultramicroscopy 26, 239 (1988).CrossRefGoogle Scholar
19.Pennycook, S. J. and Narayan, J., Phys. Rev. Lett. 54, 1543 (1985).CrossRefGoogle Scholar
20.Taftø, J., Spence, J. C. H., and Fejes, P., J. Appl. Phys. 54, 5014 (1983).CrossRefGoogle Scholar
21.Taftø, J., J. Appl. Cryst. 15, 378 (1982).CrossRefGoogle Scholar
22.Taftø, J. and Liliental, Z., J. Appl. Cryst. 15, 260 (1982).CrossRefGoogle Scholar
23.Krishnan, K. M., Rabenberg, L., Mishra, R. K., and Thomas, G., J. Appl. Phys. 55, 2058 (1984).CrossRefGoogle Scholar
24.Krishnan, K. M., Mater. Sci. Eng. B3, 397 (1989).CrossRefGoogle Scholar
25.Rossouw, C. J., Turner, P. S., and White, T. J., Philos. Mag. B57, 227 (1988).CrossRefGoogle Scholar
26.Glas, F. and Henoc, P., Philos. Mag. A56, 311 (1987).CrossRefGoogle Scholar
27.Qian, W. D., Spence, J. C. H., Kuwabara, M., and Strychor, R., Scripta Metall. 25, 337 (1991).CrossRefGoogle Scholar
28.Munroe, P. R. and Baker, I., J. Mater. Res. 6, 943 (1991).CrossRefGoogle Scholar
29.Kelly, P. M., Jostons, A., Blake, R. G., and Napier, J. G., Phys. Status Solidi (a) 31, 771 (1975).CrossRefGoogle Scholar
30.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. 2, 958.Google Scholar