Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:37:41.364Z Has data issue: false hasContentIssue false

Synthesis of dense nanometric MoSi2 through mechanical and field activation

Published online by Cambridge University Press:  31 January 2011

R. Orrù
Affiliation:
Facility for Advanced Combustion Synthesis, Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616, andDipartimento di Ingegneria Chimica e Materiali, Università di Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
J. Woolman
Affiliation:
Facility for Advanced Combusion Synthesis, Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
G. Cao
Affiliation:
Dipartimento di Ingegneria Chimica e Materiali, Università di Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
Z. A. Munir*
Affiliation:
Facility for Advanced Combustion Synthesis, Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
*
a)Address all correspondence to this author.
Get access

Abstract

The effect of mechanical and field activation on the synthesis of dense nanometric MoSi2 was investigated. Powders of Mo and Si, milled separately or comilled in a planetary ball mill, were reacted in a spark plasma synthesis (SPS) apparatus under different electric current conditions. Milled powders reacted faster and required less current than unmilled powders. Mixtures of powders which were milled separately (to nanometric size) reacted in the SPS to produce micrometric α–MoSi2. Similar results were obtained for samples comilled to produce nanometric reactants which did not contain detectable amounts of the product phase. When products form during milling, they contain both the α and β modifications of MoSi2. The product after the SPS reaction was nanometric MoSi2 with a crystallite size of 140 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gras, C., Charlot, F., Gaffet, E., Bernard, F., Neipce, J.C., Acta Mater. 47, 2113 (1999).CrossRefGoogle Scholar
2.Hahn, H. and Padmanabhan, K.A., Philos. Mag. B 76, 559 (1997).Google Scholar
3.Munir, Z.A., Charlot, F., Bernard, F., and Gaffet, E., U.S. Patent No. 6 200 515 (13 March 2001).Google Scholar
4.Charlot, F., Bernard, F., Gaffet, E., and Munir, Z.A., J. Am. Ceram. Soc. (in press, 2001).Google Scholar
5.Lee, J.W., Munir, Z.A., Shibuya, M., and Ohyanagi, M., J. Am. Ceram. Soc. (in press, 2001).Google Scholar
6.Schwarz, R.B., Srinivasan, S.R., Petrovic, J.J., and Maggiore, C.J., Mater. Sci. Eng., A 155, 75 (1992).Google Scholar
7.Ma, E., Pagan, J., Cranford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).CrossRefGoogle Scholar
8.Patankar, S.N., Xiao, S.Q., Lewandowski, J.J., and Heuer, A.H., J. Mater. Res. 8, 1311 (1993).Google Scholar
9.Yen, B.K., J. Appl. Phys. 81, 7061 (1997).Google Scholar
10.Fei, G.T., Liu, L., Ding, X.Z., Zhang, L.D., and Zheng, Q.Q., J. Alloys Compd. 229, 280 (1995).CrossRefGoogle Scholar
11.Lee, P.Y., Chen, T.R., Yang, J.L., and Chin, T.S., Mater. Sci. Eng. A, 192/193, 556 (1995).Google Scholar
12.Bokhonov, B.B., Kostanchuk, I.G., and Boldyrev, V.V., J. Alloys Compd. 218, 190 (1995).CrossRefGoogle Scholar
13.Sajgalik, P., Hnatko, M., Lofaj, F., Hvizdos, P., Dusza, J., Warbichler, P., Hofer, F., Riedel, R., Lecomte, E., and Hoffmann, M.J., J. Eur. Ceram. Soc. 20, 453 (2000).CrossRefGoogle Scholar
14.Borsa, C.E., Ferreira, H.S., and Kiminami, R.H., J. Eur. Ceram. Soc. 19, 615 (1999).Google Scholar
15.Cheong, D.S., Hwang, K.T., and Kim, C.S., Composites, Part A 30, 425 (1999).CrossRefGoogle Scholar
16.Wu, J.M. and Li, Z.Z., J. Alloy Compd. 299, 9 (2000).Google Scholar
17.Gao, L., Wang, H.Z., Hong, J.S., Miyamoto, H., Miyamoto, K., Nishikawa, Y., and Torre, S.D., J. Eur. Ceram. Soc. 19, 609 (1999).CrossRefGoogle Scholar
18.Gao, L., Wang, H.Z., Hong, J.S., Miyamoto, H., Miyamoto, K., Nishikawa, Y., and Torre, S.D., Nanostruct. Mater. 11, 43 (1999).Google Scholar
19.Munir, Z.A., Shon, I.J., and Yamazaki, K., US Patent No. 5 794 113 (11 August 1998).Google Scholar
20.Shon, I.J., Munir, Z.A., Yamazaki, K., and Shoda, K., J. Am. Ceram. Soc. 79, 1875 (1996).Google Scholar
21.Williamson, G.K. and Hall, W.H., Acta Metall. 1, 22 (1953).Google Scholar
22.Langford, J.I., in Accuracy in Powder Diffraction II, edited by Prince, E. and Stalick, J.K. (NIST Publ. 846, Gaithersburg, MD, 1992), pp. 110126.Google Scholar
23.Tokita, M., in Proceedings of NEDO International Symposium on Functionally Graded Materials, Tokyo, Japan, October 21–22 (1999), pp. 2333.Google Scholar
24.Huntington, H.B., inDiffusion in Solids, edited by Nowick, A.S. and Burton, J.J. (Academic Press, New York, 1975), pp. 303352.CrossRefGoogle Scholar
25.Orrù, R., Garay, J., Cao, G., and Munir, Z.A. (unpublished).Google Scholar