Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T16:47:01.774Z Has data issue: false hasContentIssue false

Synthesis and characterization of tungsten oxide nanorods from chemical vapor deposition-grown tungsten film by low-temperature thermal annealing

Published online by Cambridge University Press:  31 January 2011

Seongho Jeon
Affiliation:
Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
Kijung Yong*
Affiliation:
Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A simple thermal annealing was performed to prepare tungsten oxide nanorods directly from tungsten (W) film. The W film was deposited on Si(100) substrate by chemical vapor deposition (CVD) at 450 °C using W(CO)6. A high density of tungsten oxide nanorods was produced by heating of the W film at 600–700 °C. The morphology, structure, composition, and chemical binding states of the prepared nanorods were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) analysis. XRD and TEM results showed that the grown nanorods were single-crystalline W18O49. According to XPS analysis, the W18O49 nanorods contained ∼55.69% W6+, ∼32.28% W5+, and ∼12.03% W4+. The growth mechanism based on thermodynamics is discussed for the growth of tungsten oxide nanorods from W film.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K.Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 2006CrossRefGoogle ScholarPubMed
2Shankar, K., Mor, G.K., Fitzgerald, A.Grimes, C.A.: Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J. Phys. Chem. C 111, 21 2007CrossRefGoogle Scholar
3Fang, X., Ye, C., Xu, X., Xie, T., Wu, Y.Zhang, L.: Synthesis and photoluminescence of α–Al2O3 nanowires. J. Phys. Condens. Matter 16, 4157 2004CrossRefGoogle Scholar
4Chang, Y.C.Chen, L.J.: ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak. J. Phys. Chem. C 111, 1268 2007CrossRefGoogle Scholar
5Law, M., Greene, L.E., Johnson, J.C., Saykally, R.Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 2005CrossRefGoogle ScholarPubMed
6Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P.Lin, C.L.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654 2004CrossRefGoogle Scholar
7Singh, D.P., Neti, N.R., Sinha, A.S.K.Srivastava, O.N.: Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper. J. Phys. Chem. C 111, 1638 2007CrossRefGoogle Scholar
8Wang, Z.L.: Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 16, R829 2004CrossRefGoogle Scholar
9Tak, Y.Yong, K.: Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 109, 19263 2005CrossRefGoogle ScholarPubMed
10Baek, Y., Song, Y.Yong, K.: A novel heteronanostructure system: Hierarchical W nanothorn arrays WO3 nanowhiskers. Adv. Mater. 18, 3105 2006CrossRefGoogle Scholar
11Gouma, P., Kalyanasundaram, K.Bishop, A.: Electrospun single-crystal MoO3 nanowires for biochemistry sensing probes. J. Mater. Res. 21, 2904 2006CrossRefGoogle Scholar
12Qiu, X., Li, G.Li, L.: Inheriting morphology and photoluminescence properties of MgO nanoplates. J. Mater. Res. 22, 908 2007CrossRefGoogle Scholar
13Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F.Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 2003CrossRefGoogle Scholar
14Fang, X.S., Ye, C.H., Xie, T., Wang, Z.Y., Zhao, J.W.Zhang, L.D.: Regular MgO nanoflowers and their enhanced dielectric responses. Appl. Phys. Lett. 88, 013101 2006CrossRefGoogle Scholar
15Wang, X., Song, J.Wang, Z.L.: Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J. Mater. Chem. 17, 711 2007CrossRefGoogle Scholar
16Sun, Y.Rogers, J.A.: Structural forms of single crystal semiconductor nanoribbons for high performance stretchable electronics. J. Mater. Chem. 17, 832 2007CrossRefGoogle Scholar
17Fang, X.S., Ye, C.H., Zhang, L.D.Xie, T.: Twinning-mediated growth of Al2O3 nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661 2005CrossRefGoogle Scholar
18Fang, X.S.Zhang, L.D.: Controlled growth of one-dimensional oxide nanomaterials. J. Mater. Sci. Technol. 22, 1 2006Google Scholar
19Yang, C., Li, Y., Xu, G.Ma, X.: Microstructure characterization of single-crystal ZnO nanorods synthesized by solvothermal at low temperature. J. Mater. Sci. Technol. 23, 583 2007Google Scholar
20Cheng, W., Baudrin, E., Dunna, B.Zink, J.I.: Synthesis and electrochromic properties of mesoporous tungsten oxide. J. Mater. Chem. 11, 92 2001CrossRefGoogle Scholar
21He, Y., Wu, Z., Fu, L., Li, C., Miao, Y., Cao, L., Fan, H.Zou, B.: Photochromism and size effect of WO3 and WO3–TiO2 aqueous sol. Chem. Mater. 15, 4039 2003CrossRefGoogle Scholar
22Herrera, J.E., Kwak, J.H., Hua, J.Z., Wang, Y., Peden, C.H.F., Macht, J.Iglesia, E.: Synthesis, characterization, and catalytic function of novel highly dispersed tungsten oxide catalysts on mesoporous silica. J. Catal. 239, 200 2006CrossRefGoogle Scholar
23Polleux, J., Gurlo, A., Barsan, N., Weimar, U., Antonietti, M.Niederberger, M.: Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem., Int. Ed. Engl. 45, 261 2006CrossRefGoogle Scholar
24Liu, J., Zhao, Y.Zhang, Z.: Low-temperature synthesis of large-scale arrays of aligned tungsten oxide nanorods. J. Phys. Condens. Matter 15, L453 2003CrossRefGoogle Scholar
25Liu, Z., Bando, Y.Tang, C.: Synthesis of tungsten oxide nanowires. Chem. Phys. Lett. 372, 179 2003CrossRefGoogle Scholar
26Koltypin, Yu., Nikitenkob, S.I.Gedanken, A.: The sonochemical preparation of tungsten oxide nanoparticles. J. Mater. Chem. 12, 1107 2002CrossRefGoogle Scholar
27Xu, F., Tse, S.D., Al-Sharab, J.F.Kear, B.H.: Flame synthesis of aligned tungsten oxide nanowires. Appl. Phys. Lett. 88, 243115 2006CrossRefGoogle Scholar
28Frey, G.L., Rothschild, A., Sloan, J., Rosentsveig, R., Popovitz-Biro, R.Tenne, R.: Investigations of nonstoichiometric tungsten oxide nanoparticles. J. Solid State Chem. 162, 300 2001CrossRefGoogle Scholar
29Zhu, Y.Q., Hu, W., Hsu, W.K., Terrones, M., Grobert, N., Hare, J.P., Kroto, H.W., Walton, D.R.M.Terrones, H.: Tungsten oxide tree-like structures. Chem. Phys. Lett. 309, 327 1999CrossRefGoogle Scholar
30Gu, G., Zheng, B., Han, W.Q., Roth, S.Liu, J.: Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2, 849 2002CrossRefGoogle Scholar
31Cho, M.H., Park, S.A., Yang, K.D., Lyo, I.W., Jeong, K., Kang, S.K., Ko, D.H., Kwon, K.W., Ku, J.H., Choi, S.Y.Shin, H.J.: Evolution of tungsten-oxide whiskers synthesized by a rapid thermal-annealing treatment. J. Vac. Sci. Technol., B 22, 1084 2004CrossRefGoogle Scholar
32Chen, C., Wang, S., Ko, R., Kuo, Y., Uang, K., Chen, T., Liou, B.Tsai, H.: The influence of oxygen content in the sputtering gas on the self-synthesis of tungsten oxide nanowires on sputter-deposited tungsten films. Nanotechnology 17, 217 2006CrossRefGoogle Scholar
33Zhou, J., Gong, L., Deng, S.Z., Chen, J., She, J.C., Xu, N.S., Yang, R.Wang, Z.L.: Growth and field-emission property of tungsten oxide nanotip arrays. Appl. Phys. Lett. 87, 223108 2005CrossRefGoogle Scholar
34Li, Y., Bando, Y.Golberg, D.: Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294 2003CrossRefGoogle Scholar
35Jin, Y.Z., Zhu, Y.Q., Whitby, R.L.D., Yao, N., Ma, R., Watts, P.C.P., Kroto, H.W.Walton, D.R.M.: Simple approaches to quality large-scale tungsten oxide nanoneedles. J. Phys. Chem. B 108, 15572 2004CrossRefGoogle Scholar
36Wang, S.J., Chen, C.H., Ko, R.M., Kuo, Y.C., Wong, C.H., Wu, C.H., Uang, K.M., Chen, T.M.Liou, B.W.: Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process. Appl. Phys. Lett. 86, 263103 2005CrossRefGoogle Scholar
37Hu, W.B., Zhu, Y.Q., Hsu, W.K., Chang, B.H., Terrones, M., Grobert, N., Terrones, H., Hare, J.P., Kroto, H.W.Walton, D.R.M.: Generation of hollow crystalline tungsten oxide fibres. Appl. Phys. A 70, 231 2000CrossRefGoogle Scholar
38Choi, H.G., Jung, Y.H.Kim, D.K.: Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J. Am. Ceram. Soc. 88, 1684 2005CrossRefGoogle Scholar
39Lee, K., Seo, W.S.Park, J.T.: Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408 2003CrossRefGoogle ScholarPubMed
40Lou, X.W.Zeng, H.C.: An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution. Inorg. Chem. 42, 6169 2003CrossRefGoogle ScholarPubMed
41Li, X.L., Liu, J.F.Li, Y.D.: Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg. Chem. 42, 921 2003CrossRefGoogle ScholarPubMed
42Seo, J., Jun, Y., Ko, S.J.Cheon, J.: In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals. J. Phys. Chem. B 109, 5389 2005CrossRefGoogle ScholarPubMed
43Polleux, J., Pinna, N., Antonietti, M.Niederberger, M.: Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 127, 15595 2005CrossRefGoogle ScholarPubMed
44Woo, K., Hong, J., Ahn, J., Park, J.Kim, K.: Coordinatively induced length control and photoluminescence of W18O49 nanorods. Inorg. Chem. 44, 7171 2005CrossRefGoogle ScholarPubMed
45JCPDS No. 04-0806. International Center for Diffraction Data Newton Square, PA 1953Google Scholar
46Jeong, U., Camargo, P.H.C., Leeb, Y.H.Xia, Y.: Chemical transformation: A powerful route to metal chalcogenide nanowires. J. Mater. Chem. 16, 3893 2006CrossRefGoogle Scholar
47McCann, J.T., Li, D.Xia, Y.: Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J. Mater. Chem. 15, 735 2005CrossRefGoogle Scholar
48Fang, X.S., Ye, C.H., Zhang, L.D., Wang, W.H.Wu, Y.C.: Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Funct. Mater. 15, 63 2005CrossRefGoogle Scholar
49Fang, X.S., Ye, C.H., Peng, X.S., Wang, Y.H., Wu, Y.C.Zhang, L.D.: Temperature-controlled growth of a-Al2O3 nanobelts and nanosheets. J. Mater. Chem. 13, 3040 2003CrossRefGoogle Scholar
50Kim, F., Connor, S., Song, H., Kuykendall, T.Yang, P.: Platonic gold nanocrystals. Angew. Chem., Int. Ed. Engl. 43, 3673 2004CrossRefGoogle ScholarPubMed
51Jim, L.S., Makovskyt, L.E., Stencel, J.M., Brown, F.R.Hercules, D.M.: Surface spectroscopic study of tungsten-alumina catalysts using x-ray photoelectron, ion scattering, and raman spectroscopies. J. Phys. Chem. 85, 3700 1981Google Scholar
52Romanyuk, A.Oelhafen, P.: Evidence of different oxygen states during thermal coloration of tungsten oxide. Sol. Energy Mater. Sol. Cells 25, 490 2006Google Scholar
53Santucci, S., Cantalini, C., Crivellari, M., Lozzi, L., Ottaviano, L.Passacantando, M.: X-ray photoemission spectroscopy and scanning tunneling spectroscopy study on the thermal stability of WO3 thin films. J. Vac. Sci. Technol., A 18, 1077 2000CrossRefGoogle Scholar
54Leftheriotisa, G., Papaefthimioua, S., Yianoulisa, P.Siokou, A.: Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin Solid Films 384, 298 2001CrossRefGoogle Scholar
55Lozzi, L., Passacantando, M., Santucci, S., Rosa, S.L.Svechnikov, N. Yu.: Surface and in depth chemistry of polycrystalline WO3 thin films studied by x-ray and soft x-ray photoemission spectroscopies. IEEE Sensors J. 3, 180 2003CrossRefGoogle Scholar
56Gogova, D., Gesheva, K., Szekeres, A.Sendova-Vassileva, M.: Structural and optical properties of CVD thin tungsten oxide films. Phys. Status Solidi 176, 969 19993.0.CO;2-9>CrossRefGoogle Scholar
57De Angelis, B.A.Schiavello, M.: X-ray photoelectron spectroscopy study of nonstoichiometric tungsten oxides. J. Solid State Chem. 21, 67 1977CrossRefGoogle Scholar
58JCPDS No. 36-101. International Center for Diffraction Data Newton Square, PA 1982Google Scholar
59Vu, Q.T., Pokela, P.J., Garden, C.L., Kolawa, E., Raud, S.Nicolet, M.A.: Thermal oxidation of reactively sputtered amorphous W80N20 films. J. Appl. Phys. 68, 6420 1990CrossRefGoogle Scholar
60Gillet, M., Delamare, R.Gillet, E.: Growth, structure and electrical properties of tungsten oxide nanorods. Eur. Phys. J. D 34, 291 2005CrossRefGoogle Scholar
61Santucci, S., Lozzi, L., Maccallini, E., Passacantando, M., Ottaviano, L.Cantalini, C.: Oxygen loss and recovering induced by ultrahigh vacuum and oxygen annealing on WO3 thin film surfaces: Influences on the gas response properties. J. Vac. Sci. Technol., A 19, 1467 2001CrossRefGoogle Scholar