Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:49:05.902Z Has data issue: false hasContentIssue false

Synthesis and characterization of rutile TiO2 nanowhiskers

Published online by Cambridge University Press:  31 January 2011

G. L. Li
Affiliation:
National Laboratory of Solid State Microstructures, Center for Advanced Studies of Science and Technology of Nanjing University, Nanjing 210093, China and Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Academia Sinica, Shenyang 110015, China
G. H. Wang
Affiliation:
National Laboratory of Solid State Microstructures, Center for Advanced Studies of Science and Technology of Nanjing University, Nanjing 210093, China and Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Academia Sinica, Shenyang 110015, China
J. M. Hong
Affiliation:
Modern Analysis Center, Nanjing University, Nanjing 210093, China
Get access

Abstract

Rutile TiO2 nanowhiskers have been synthesized by annealing a precursor powder in which NaCl and Ti(OH)4 particles were homogeneously mixed. The precursor powder was prepared by mixing three kinds of inverse microemulsions (μE) containing TiCl4 aqueous solution, ammonia, and NaCl aqueous solution, respectively, followed by washing with acetone. Annealing temperature and packing density of Ti(OH)4 in the precursor powder influenced the formation of rutile nanowhiskers. The optimum temperature was 750 °C. TiO2 nanowhiskers obtained by annealing a precursor powder in which the molar ratio of sodium to titanium was 400 at 750 °C for 2 h had diameters of 10–50 nm and lengths of several micrometers. They were straight rods with square cross sections, and the side surfaces were composed of four equivalent {110} planes.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nanostructured Materials in Electrochemistry, edited by P.C. Searson and G.J. Mayer (Electrochem. Soc. Proc. 95–8, Pennington, 1995).Google Scholar
2.Photocatalysis: Fundamentals and Applications, edited by N. Serpone and E. Pellizetti (John Wiley & Sons, New York, 1989).Google Scholar
3.Jones, P. and Hockey, J.A., Trans. Faraday Soc. 67, 2679 (1971).CrossRefGoogle Scholar
4.Toshev, S. in Crystal Growth: A Introduction, edited by Hartman, P. (North-Holland, Amsterdam, 1973), p. 328.Google Scholar
5.Dal, H., Wong, E.W., Lu, Y.Z., Fan, S., and Lieber, C.M., Nature 375, 769 (1995).Google Scholar
6.Han, W., Fan, S., Li, Q., and Hu, Y., Science 277, 1287 (1997).CrossRefGoogle Scholar
7.Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).CrossRefGoogle Scholar
8.Westwater, J., Gosain, D.P., Tomiya, S., and Usui, S., J. Vac. Sci. Technol. B15, 554 (1997).CrossRefGoogle Scholar
9.Hiruma, K., Yazawa, M., Katsuyama, T., Ogawa, K., Haraguchi, K., and Koguchi, M., J. Appl. Phys. 77, 447 (1995).CrossRefGoogle Scholar
10.Trantler, T.J., Hickman, K.M., Goel, S.C., Viano, A.M., Gibbons, P.C., and Buhro, W.E., Science 270, 1791 (1995).CrossRefGoogle Scholar
11.Martin, C.R., Science 266, 1961 (1994).CrossRefGoogle Scholar
12.Cuerrent-Plecourt, C., Nature 372, 761 (1994).Google Scholar
13.Braun, E., Nature 391, 775 (1998).CrossRefGoogle Scholar
14.Matsuda, S., Appl. Catal. 8, 149 (1983).CrossRefGoogle Scholar
15.Dagan, G. and Tomkiewics, M., J. Phys. Chem. 97, 12651 (1003).CrossRefGoogle Scholar
16.Azad, A.M., Younkman, L.B., and Akbar, S. A., J. Am. Ceram. Soc. 77, 481 (1994).CrossRefGoogle Scholar
17.Yeh, Y.C., Tseng, T.T., and Chang, D.A., J. Am. Ceram. Soc. 73, 1992 (1990).CrossRefGoogle Scholar
18.Katayama, A.M., Hasegawa, H., Noda, T., Akiba, T., and Yanagida, H., Sensors and Actuators B2, 143 (1992).Google Scholar
19.Marchand, R., Brohan, L., and Tournoux, M., Mater. Res. Bull. 15, 1129 (1980).CrossRefGoogle Scholar
20.Yanagita, H., Shimizu, T., Hashimoto, K., Morita, T., and Tsbone, D., Jpn. Patent 78 41,518 (1978).Google Scholar
21.Elfenthal, L., Klein, E., and Rosendahl, F., German Patent 41 05,345.1 (1992).Google Scholar
22.Oota, T. and Yamai, I., J. Cryst. Growth 66, 262 (1984).CrossRefGoogle Scholar
23.Wang, J., Ee, L.S., Ng, S.C., Chew, C.H., and Gan, L.M., Mater. Lett. 30, 119 (1997).CrossRefGoogle Scholar
24.Barnickel, P., Wokaun, A., Sager, W., and Eiche, H.F., J. Colloid Interface Sci. 148, 80 (1992).CrossRefGoogle Scholar
25.Herrig, H. and Hempelmann, R., Mater. Lett. 27, 287 (1996).CrossRefGoogle Scholar
26.Hingorani, S., Shah, D.O., and Multani, M.S., J. Mater. Res. 10, 461 (1995).CrossRefGoogle Scholar
27.Hartl, W., Beck, Ch., Roth, M., Meyer, F., and Hempelmann, R., Ber. Bunsenges Phys. Chem. 101, 1714 (1997).CrossRefGoogle Scholar
28.Kumar, P., Pilloi, V., and Shah, D.O., Appl. Phys. Lett. 62, 765 (1993).CrossRefGoogle Scholar
29.Schlag, S., Eicke, H.E., Mathys, D., and Guggenheim, R., Langmuir 10, 3775 (1994).CrossRefGoogle Scholar
30.Gan, M., Chan, H.S.O, Zhang, L.H., Chew, C.H., and Loo, B.H., Mater. Chem. Phys. 37, 263 (1994).CrossRefGoogle Scholar
31.Pathank, A., Mukhopadhyay, D.K., and Pramnik, P., Mater. Res. Bull. 27, 155 (1992).CrossRefGoogle Scholar
32.Park, H.K., Kim, D.K., and Kim, C.H., J. Am. Ceram. Soc. 80, 743 (1997).CrossRefGoogle Scholar
33.Harada, J., Takata, M., Miyatake, H., and Koyama, H., J. Appl. Cryst. 22, 592 (1989).CrossRefGoogle Scholar
34.Edington, J.W., Electron Diffraction in The Electron Microscope (Macmillan Press, London, 1975), p. 54.CrossRefGoogle Scholar
35.Szabo, A. and Engel, T., Surf. Sci. 329, 241 (1995).CrossRefGoogle Scholar
36.Onishi, H. and Iwasawa, Y., Surf. Sci. 313, L783 (1994).CrossRefGoogle Scholar
37.Xu, C., Lai, X., Zajac, G.W., and Goodman, D.W., Phys. Rev. B56, 13464 (1992).Google Scholar
38.Marks, L.D. and Smith, D.J., Nature 303, 316 (1983).CrossRefGoogle Scholar
39.Marks, L.D., Phys. Rev. Lett. 51, 1000 (1983).CrossRefGoogle Scholar
40.Kumar, K-N.P, Script. Metal. Mater. 32, 873 (1995).CrossRefGoogle Scholar
41.Ding, X.Z. and He, Y.Z., J. Mater. Sci. Lett. 15, 320 (1996).CrossRefGoogle Scholar
42.Rodriguez, R., Vrgas, S., Arroyo-Murillo, R., Montiel-Campos, R., and Haro-Poniatowski, E., J. Mater. Res. 12, 439 (1997).CrossRefGoogle Scholar
43.Levin, E.M. and McMuride, H.F., Phase Diagrams for Ceramist, edited by Margie, K.R. (Am. Ceram. Soc., Columbus, OH, 1969) suppl. p. 473.Google Scholar
44.Kumar, K-N.P, Keizer, K., Burggraaf, A.J., Okubo, T., Nagamoto, H., and Morooka, S., Nature 358, 48 (1992).CrossRefGoogle Scholar
45.Gesenhues, U., Solid State Ionics 101–103, 1171 (1997).CrossRefGoogle Scholar