Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T20:15:00.852Z Has data issue: false hasContentIssue false

Synchrotron radiation investigations of microstructural evolutions of ODS steels and Zr-based alloys irradiated in nuclear reactors

Published online by Cambridge University Press:  08 April 2015

Denis Menut*
Affiliation:
CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-sur-Yvette, France
Jean-Luc Béchade
Affiliation:
CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-sur-Yvette, France
Sebastiano Cammelli
Affiliation:
Synchrotron SOLEIL, Division Expériences, Ligne MARS, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette Cedex, France
Sandrine Schlutig
Affiliation:
Synchrotron SOLEIL, Division Expériences, Ligne MARS, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette Cedex, France
Bruno Sitaud
Affiliation:
Synchrotron SOLEIL, Division Expériences, Ligne MARS, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette Cedex, France
Pier Lorenzo Solari
Affiliation:
Synchrotron SOLEIL, Division Expériences, Ligne MARS, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette Cedex, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Synchrotron-based x-ray techniques are used to bring complementary information to local probes such as atom probe tomography and transmission electron microscopy. Two examples of nuclear materials used for the cladding of fuel assembly are given: oxide dispersion strengthened (ODS) alloys and M5™ Zr-based alloys. In both cases, synchrotron radiation analyses bring original results concerning nanosized secondary phases: for M5™, radiation-enhanced precipitation of β-Nb precipitates has been evidence and the crystallographic structure (lattice parameter and Nb content) is reported for the first time and for irradiated ODS, the dissolution of larger oxides is evidenced while a finer distribution of complex Y–Ti–O oxides still acts as obstacles for dislocations.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Djamel Kaoumi

References

REFERENCES

Onimus, F. and Béchade, J-L.: Radiation effects in zirconium alloys. In Comprehensive Nuclear Materials, Konings, R., Allen, T., Stoller, R., and Yamanaka, S. eds.; Elsevier: Amsterdam, Holland, 2012; p.2.Google Scholar
Was, G.S. and Averback, R.S.: Radiation damage using ion beams. In Comprehensive Nuclear Materials, Konings, R., Allen, T., Stoller, R., and Yamanaka, S. eds.; Elsevier: Amsterdam, Holland, 2012; p. 195.Google Scholar
Béchade, J-L., Menut, D., Lescoat, M-L., Sitaud, B., Schlutig, S., Solari, P.L., Llorens, I., Hermange, H., de Carlan, Y., Ribis, J., and Toualbi, L.: Application of synchrotron radiation to analyze the precipitation in ODS materials before irradiation in Fe-9%Cr single grain of powder and consolidated Fe-18%Cr. J. Nucl. Mater. 428, 183 (2012).CrossRefGoogle Scholar
Béchade, J-L., Menut, D., Doriot, S., Schlutig, S., and Sitaud, B.: X-ray diffraction analysis of secondary phases in zirconium alloys before and after neutron irradiation at the MARS synchrotron radiation beamline. J. Nucl. Mater. 437, 365 (2013).CrossRefGoogle Scholar
Doriot, S., Verhaeghe, B., Béchade, J-L., Menut, D., Gilbon, D., Mardon, J-P., Cloue, J-M., Miquet, A., and Legras, L.: Microstructural evolution of M5TM alloy irradiated in PWRs up to high fluences—Comparison with other Zr-based alloys. In Zirconium in the Nuclear Industry: 17th International Symposium, STP 1543, Comstock, R. and Barberis, P. eds.; ASTM International: West Conshohocken, PA, 2014; p.1.Google Scholar
Dubuisson, P., Schill, R., Hugon, M-P., Grislin, I., and Seran, J.L.: Behavior of an oxide dispersion strengthened ferritic steel irradiated in Phenix. In Effects of Radiation on Materials: 18th International Symposium, ASTM STP 1325, Nanstad, R.K., Hamilton, M.L., Garner, F.A., and Kumar, S.A. eds.; ASTM International: West Conshohocken, PA, 1999; p. 882.Google Scholar
Monnet, I., Dubuisson, P., Serruys, Y., Ruault, M.O., Kaitasov, O., and Jouffrey, B.: Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels. J. Nucl. Mater. 335, 311 (2004).Google Scholar
Doriot, S., Gilbon, D., Béchade, J.L., Mathon, M.H., Legras, L., and Mardon, J.P.: Microstructural stability of M5TM alloy irradiated up to high neutron fluences. In Zirconium in the Nuclear Industry: 14th International Symposium, ASTM STP 1467, Rudling, P. and Kammenzind, B. eds.; ASTM International: West Conshohocken, PA, 2005; p.175.Google Scholar
Ukai, S.: Oxide dispersion strengthened steels. In Comprehensive Nuclear Materials, Konings, R., Allen, T., Stoller, R., and Yamanaka, S. eds.; Elsevier: Amsterdam, Holland, 2012; p. 242.Google Scholar
Dubuisson, P., de Carlan, Y., Garat, V., and Blat, M.: ODS ferritic/martensitic alloys for sodium fast reactor fuel pin cladding. J. Nucl. Mater. 428, 6 (2012).Google Scholar
Oksiuta, Z., Olier, P., de Carlan, Y., and Baluc, N.: Development and characterisation of a new ODS ferritic steel for fusion reactor application. J. Nucl. Mater. 393, 114 (2009).CrossRefGoogle Scholar
Tavassoli, A-A.F., Diegele, E., Lindau, R., Luzginova, N., and Tanigawa, H.: Current status and recent research achievements in ferritic/martensitic steels. J. Nucl. Mater. 455, 269 (2014).Google Scholar
Ribis, J. and Lozano-Perez, S.: Nano-cluster stability following neutron irradiation in MA957 oxide dispersion strengthened material. J. Nucl. Mater. 444, 314 (2014).Google Scholar
Yamashita, S., Akasaka, N., Ukai, S., and Ohnuki, S.: Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature. J. Nucl. Mater. 367370, 202 (2007).CrossRefGoogle Scholar
Frost, H.J. and Russell, K.C.: Recoil resolution and particles stability under irradiation. J. Nucl. Mater. 104, 1427 (1981).Google Scholar
De Bremaecker, A.: Past research and fabrication conducted at SCK.CEN on ferritic ODS alloys used as cladding for FBR’s fuel pins. J. Nucl. Mater. 428, 13 (2012).Google Scholar
Zakin, C., Prioul, C., and Francois, D.: Creep behavior of ODS steels. Mater. Sci. Eng., A 219, 102 (1996).CrossRefGoogle Scholar
Sitaud, B., Solari, P.L., Schlutig, S., Llorens, I., and Hermange, H.: Characterization of radioactive materials using the MARS beamline at the synchrotron SOLEIL. J. Nucl. Mater. 425, 238 (2012).Google Scholar
Wertheim, G.K., Butler, M.A., West, K.W., and Buchanan, D.N.E.: Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 45, 1369 (1974).CrossRefGoogle Scholar
Caglioti, G., Paoletti, A., and Ricci, F.P.: Choice of collimator for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 3, 223 (1958).Google Scholar
Lutterotti, L.: Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 334 (2010).CrossRefGoogle Scholar
Hammersley, A.P., Svensson, S.O., Thompson, A., Graafsma, H., Kvick, A., and Moy, J.P.: Calibration and correction of distortion in two-dimensional detector systems. Rev. Sci. Instrum. 66, 2729 (1995).Google Scholar
Rodriguez-Carvajal, J.: FULLPROF: A program for Rietveld refinement and pattern matching analysis. In Abstract of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990; p.127.Google Scholar
Coelho, A.A.: Indexing of powder diffraction patterns by iterative use of singular value decomposition. J. Appl. Crystallogr. 36, 86 (2003).CrossRefGoogle Scholar
Le Bail, A.: Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 20, 316 (2005).Google Scholar
Ravel, B. and Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537 (2005).Google Scholar
Mathon, M.H., Perrut, M., Zhong, S.Y., and de Carlan, Y.: Small angle neutron scattering study of martensitic/ferritic ODS alloys. J. Nucl. Mater. 428, 147 (2012).Google Scholar
Sakasegawa, H., Chaffron, L., Legendre, F., Brocq, M., Boulanger, L., Poissonnet, S., de Carlan, Y., Béchade, J-L., Cozzika, T., and Malaplate, J.: Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy. J. Nucl. Mater. 386388, 511 (2009).CrossRefGoogle Scholar
Katagiri, S., Ishizawa, N., and Marumo, F.: A new high temperature modification of face-centered cubic Y2O3 . Powder Diffr. 8, 60 (1993).Google Scholar
Klimiankou, M., Lindau, R., Moslang, A., and Schroder, J.: TEM study of PM 2000 steel. Powder Metall. 48, 277 (2005).Google Scholar
Yamashita, S., Oka, K., Ohnuki, S., Akasaka, N., and Ukai, S.: Phase stability of oxide dispersion-strengthened of ferritic steels in neutron irradiation. J. Nucl. Mater. 307311, 283 (2002).Google Scholar
Rogozhkin, S.V., Aleev, A.A., Zaluzhnyi, A.G., Nikitin, A.A., Iskandarov, N.A., Vladimirov, P., Lindau, R., and Moslang, A.: Atom probe characterization of nano-scaled features in irradiated ODS Eurofer steel. J. Nucl. Mater. 409, 94 (2011).Google Scholar
Degueldre, C., Conradson, S., and Hoffelner, W.: Characterisation of oxide dispersion-strengthened steel by extended X-ray absorption spectroscopy for its use under irradiation. Comput. Mater. Sci. 33, 3 (2005).Google Scholar
He, P., Liu, T., Moslang, A., Lindau, R., Ziegler, R., Hoffmann, J., Kurinskiy, P., Commin, L., Vladimirov, P., Nikitenko, S., and Silveir, M.: XAFS and TEM studies of the structural of yttrium-enriched oxides in nanostructured ferritic alloys fabricated by a powder metallurgy process. J. Mater. Chem. Phys. 136, 990 (2012).Google Scholar
Liu, S., Odette, G.R., and Segre, C.U.: Evidence for core-shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy. J. Nucl. Mater. 445, 50 (2014).Google Scholar
Shishov, V.N.: The evolution of microstructure and deformation stability in Zr-Nb-(Sn, Fe) alloys under neutron irradiation. In Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Rudling, P. and Kammenzind, B. eds.; ASTM International: West Conshohocken, PA, 2011; p.37.Google Scholar
Cuello, G.J., Fernandez Guillermet, A., Grad, G.B., Mayer, R.E., and Granada, J.R.: Structural properties and stability of the bcc and omega phases in Zr-Nb system. I. Neutron diffraction study of a quenched and aged Zr-10 wt% Nb alloy. J. Nucl. Mater. 218, 236 (1995).CrossRefGoogle Scholar
Ribis, J. and de Carlan, Y.: Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 60, 238 (2012).Google Scholar
Ribis, J., Lescoat, M-L., Zhong, S.Y., Mathon, M-H., and de Carlan, Y.: Influence of the low interfacial density energy on the coarsening resistivity of the nano-oxide particles in Ti-added ODS materials. J. Nucl. Mater. 442, 5101 (2013).Google Scholar