Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T21:50:03.606Z Has data issue: false hasContentIssue false

Switching magnetic order in nanoporous Pd–Ni by electrochemical charging

Published online by Cambridge University Press:  23 October 2013

Sadhan Ghosh*
Affiliation:
Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, 76021 Karlsruhe, Germany; and Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The present work demonstrates an isothermal reversible variation of magnetization in nanoporous Pd67Ni33 alloy during continuous charging and discharging of the alloy electrode in 1-M KOH solution. A custom-built electrochemical cell, containing the sample as working electrode performed the in situ charging experiments inside an extraction magnetometer at a constant applied magnetic field. The metal–electrolyte response was examined by varying the electrode potential, which apart from polarizing nanoporous structure, may also lead to electrodissociation of the electrolyte medium, being aqueous in nature. The result therefore analyzed hydrogenation as the key parameter for the observed reversible magnetization in the transition metal alloy at room temperature. In addition, electrochemical reactivity due to surface oxidation at the positive potential has been discussed, considering that a change in the band structure is also possible at the negative potential regime due to hydrogenation through cyclic voltammetry study.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cullity, B.D.: Introduction to Magnetic Materials (Addition-Wesley, Reading, MA, 1972), p. 144.Google Scholar
Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., and Ohtani, K.: Electric-field control of ferromagnetism. Nature 408, 944 (2000).CrossRefGoogle ScholarPubMed
Gleiter, H.: Tuning the electronic structure of solids by means of nanometer-sized microstructures. Scr. Mater. 44, 1161 (2001).CrossRefGoogle Scholar
Weissmüller, J., Viswanath, R.N., Kramer, D., Zimmer, P., Würschum, R., and Gleiter, H.: Charge-induced reversible strain in a metal. Science 300, 312 (2003).CrossRefGoogle ScholarPubMed
Biener, J., Wittstock, A., Zepeda-Ruiz, L.A., Biener, M.M., Zielasek, V., Kramer, D., Viswanath, R.N., Weissmüller, J., Bäumer, M., and Hamza, A.V.: Surface-chemistry-driven actuation in nanoporous gold. Nature 8, 47 (2009).CrossRefGoogle ScholarPubMed
Haiss, W.: Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591 (2001).CrossRefGoogle Scholar
Nichols, R.J., Nouar, T., Lucas, C.A., Haiss, W., and Hofer, W.A.: Surface relaxation and surface stress of Au (1 1 1). Surf. Sci. 513, 263 (2002).CrossRefGoogle Scholar
Kavan, L., Rapta, R., Dunsch, L., Bronikowski, M.J., Willis, P., and Smalley, R.E.: Electrochemical tuning of electronic structure of single-walled carbon nanotubes: In-situ Raman and Vis-NIR study. J. Phys. Chem. B 105, 10764 (2001).CrossRefGoogle Scholar
Bozorth, R.M.: Ferromagnetism (Wiley-IEEE Press, New York, NY, 2003), p. 440.Google Scholar
Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., Rossi, D.D., Rinzler, A.G., Jaschinski, O., Roth, S., and Kertesz, M.: Carbon nanotube actuators. Science 284, 1340 (1999).CrossRefGoogle ScholarPubMed
Mishra, A.K., Bansal, C., and Hahn, H.: Surface charge induced variation in the electrical conductivity of nanoporous gold. J. Appl. Phys. 103, 094308 (2008).CrossRefGoogle Scholar
Sagmeister, M., Brossmann, U., Landgraf, S., and Würschum, R.: Electrically tunable resistance of a metal. Phys. Rev. Lett. 96, 156601 (2006).CrossRefGoogle ScholarPubMed
Lemier, C., Ghosh, S., and Weissmueller, J.: Charge induced variation of the magnetization in nanoporous Ni-Pd. MRS Proc. 876, R2.6 (2005).CrossRefGoogle Scholar
Ghosh, S., Lemier, C., and Weissmüller, J.: Charge-dependent magnetization in nanoporous Pd-Co Alloys. IEEE Trans. Magn. 42, 3617 (2006).CrossRefGoogle Scholar
Ghosh, S.: Charge-response of magnetization in nanoporous Pd–Ni alloys. J. Magn. Magn. Mater. 323, 552 (2011).CrossRefGoogle Scholar
Mishra, A.K., Bansal, C., Ghafari, M., Kruk, R., and Hahn, H.: Tuning properties of nanoporous Au-Fe alloys by electrochemically induced surface charge variations. Phys. Rev. B 81, 155452 (2010).CrossRefGoogle Scholar
Grdeń, M., Czerwinski, A., Golimowski, J., Bulska, E., Krasnodebska-Ostrega, B., Marassi, R., and Zamponi, S.: Hydrogen electrosorption in Ni–Pd alloys. J. Electroanal. Chem. 460, 30 (1999).CrossRefGoogle Scholar
Grdeń, M., Kusmierczyk, K., and Czerwiński, A.: Study of hydrogen electrosorption in Pd-Ni alloys by the quartz crystal microbalance. J. Solid State Electrochem. 7, 43 (2002).Google Scholar
Grdeń, M., Klimek, K., and Czerwiński, A.: Quartz crystal microbalance studies on electrochemical behavior of electrodeposited Pd–Ni alloys. Electrochim. Acta 51, 2221 (2006).CrossRefGoogle Scholar
Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (2000).CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E.: X-ray Diffraction Procedures: For Polycrystallite and Amorphous Materials, 2nd ed. (John Wiley and Sons, New York, 1974) p. 618.Google Scholar
Campesi, R., Cuevas, F., Leroy, E., Hirscher, M., Gadiou, R., Vix-Guterl, C., and Latroche, M.: In situ synthesis and hydrogen storage properties of PdNi alloy nanoparticles in an ordered mesoporous carbon template. Microporous Mesoporous Mater. 117, 511 (2009).CrossRefGoogle Scholar
Ferrando, W.A., Segnan, R., and Schindler, A.I.: Matrix and impurity-cluster polarization in Ni-Pt and Ni-Pd alloys. Phys. Rev. B 5, 4657 (1972).CrossRefGoogle Scholar
Kodama, R.H. and Berkowitz, A.E.: Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321 (1999).CrossRefGoogle Scholar
Biggs, H.F.: The decrease in the paramagnetism of palladium caused by absorbed hydrogen. Philos. Mag. 32, 40 (1916).CrossRefGoogle Scholar
Svensson, B.: Die magnetische Suszeptibilität der elektrolytisch aufgeladenen Palladium-Wasserstofflegierungen. Ann. D. Phys. 410, 299 (1933).CrossRefGoogle Scholar
Ke, X., Kramer, G.J., and Løvvik, O.M.: The influence of electronic structure on hydrogen absorption in palladium alloys. J. Phys. Condens. Matter. 16, 6267 (2004).CrossRefGoogle Scholar
Raffy, H., Dumoulin, L., and Burger, J.B.: Enhancement of the magnetic hysteresis in ultrathin PdNi films by hydrogen absorption-desorption cycling. J. Magn. Magn. Mater. 69, 258 (1987).CrossRefGoogle Scholar
Crespo, E.A., Ruda, M., and Debiaggi, R.D.S.: Hydrogen absorption in Ni and Pd: A study based on atomistic calculations. Int. J. Hydrogen Energy 33, 3561 (2008).CrossRefGoogle Scholar
Kurokova, H., Nakayama, T., Kobayashi, Y., Suzuki, K., Takahashi, M., Takami, S., Kubo, M., Itoh, N., Selvam, P., and Miyamoto, A.: Monte Carlo simulation of hydrogen absorption in palladium and palladium–silver alloys. Catal. Today 82, 233 (2003).CrossRefGoogle Scholar
Beille, J. and Chouteau, G.: Giant moments and pressure effects in Pd-Ni alloys. J. Phys. F: Met. Phys. 5, 721 (1975).CrossRefGoogle Scholar
Tatsumoto, E., Fujiwara, H., Okamoto, T., and Fujii, H.: Effect of hydrostatic pressures on the Curie temperature in Pd-Ni Alloys. J. Phys. Soc. Jpn. 25, 1734 (1968).CrossRefGoogle Scholar
Gelatt, C.D.J., Ehrenreich, H., and Weiss, J.A.: Transition-metal hydrides: Electronic structure and the heats of formation. Phys. Rev. B 17, 1940 (1978).CrossRefGoogle Scholar
Mathon, J.: Pressure dependence of the magnetization in the itinerant electron model of ferromagnetism. J. Phys. F: Met. Phys. 2, 159 (1972).CrossRefGoogle Scholar
Das, S.G., Koelling, D.D., and Mueller, F.M.: Pressure dependence of the electronic structure and Fermi surface of palladium. Solid State Commun. 12, 89 (1973).CrossRefGoogle Scholar