Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T16:26:29.292Z Has data issue: false hasContentIssue false

Substrate effects on indentation plastic zone development in thin soft films

Published online by Cambridge University Press:  31 January 2011

D. E. Kramer
Affiliation:
Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899–8553
A. A. Volinsky
Affiliation:
Motorola, DigitalDNA Labs, Process and Materials Characterization Lab, Mesa, Arizona 85202
N. R. Moody
Affiliation:
Materials Reliability Division, Sandia National Labs, Livermore, California 94551–0969
W. W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

Plastic zone evolution in Al–2 wt% Si metal films on silicon and sapphire substrates was studied using nanoindentation and atomic force microscopy (AFM). AFM was used to measure the extent of plastic pileup, which is a measure of the plastic zone radius in the film. It was found that the plastic zone size develops in a self-similar fashion with increasing indenter penetration when normalized by the contact radius, regardless of film hardness or underlying substrate properties. This behavior was used to develop a hardness model that uses the extent of the plastic zone radius to calculate a core region within the indenter contact that is subject to an elevated contact pressure. AFM measurements also indicated that as film thickness decreases, constraint imposed by the indenter and substrate traps the film thereby reducing the pileup volume.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lebouvier, D., Gilormini, P., and Felder, E., J. Phys. D 18, 199 (1985).CrossRefGoogle Scholar
2.Bhattacharya, A.K. and Nix, W.D., Int. J. Sol. Struct. 27, 1047 (1991).CrossRefGoogle Scholar
3.Lebouvier, D., Gilormini, P., and Felder, E., Thin Solid Films 172, 227 (1989).CrossRefGoogle Scholar
4.Joönsson, B. and Hogmark, S., Thin Solid Films 114, 257 (1984).CrossRefGoogle Scholar
5.Sargent, P.M., in Microindentation Techniques in Materials Science, ASTM Spec. Tech. Publ. 889, edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1986).Google Scholar
6.Burnett, P.J. and Page, T.F., J. Mater. Sci. 19, 845 (1984).CrossRefGoogle Scholar
7.Burnett, P.J. and Rickerby, D.S., Thin Solid Films 148, 41 (1987).CrossRefGoogle Scholar
8.Burnett, P.J. and Rickerby, D.S., Thin Solid Films 148, 51 (1987).CrossRefGoogle Scholar
9.Fabes, B.D., Oliver, W.C., McKee, R.A., and Walker, F.J., J. Mater. Res. 7, 3056 (1992).CrossRefGoogle Scholar
10.Ahn, J-H. and Kwon, D., J. Appl. Phys. 82, 3266 (1997).CrossRefGoogle Scholar
11.Stone, D., LaFontaine, W.R., Alexopoulos, P., Wu, T-W., and Li, C-Y., J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
12.Bhattacharya, A.K. and Nix, W.D., Int. J. Sol. Struct. 24, 1287 (1988).CrossRefGoogle Scholar
13.Wittling, M., Bendavid, A., Martin, P.J., and Swain, M.V., Thin Solid Films 270, 283 (1995).CrossRefGoogle Scholar
14.Hill, R., The Mathematical Theory of Plasticity (Clarendon Press, Oxford, United Kingdom, 1950).Google Scholar
15.Marsh, D.M., Proc. R. Soc. London A 279, 420 (1964).Google Scholar
16.Johnson, K.L., J. Mech. Phys. Sol. 18, 115 (1970).CrossRefGoogle Scholar
17.Chiang, S.S., Marshall, D.B., and Evans, A.G., J. Appl. Phys. 53, 298 (1982).CrossRefGoogle Scholar
18.Ford, I.J., Thin Solid Films 245, 122 (1994).CrossRefGoogle Scholar
19.Kennedy, F.E. and Ling, F.F., J. Eng. Mater. Tech. 86, 97 (1974).CrossRefGoogle Scholar
20.Laursen, T.A. and Simo, J.C., J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
21.Bolshakov, A. and Pharr, G.M., J. Mater. Res. 13, 1049 (1998).CrossRefGoogle Scholar
22.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
23.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
24.Tsui, T.Y. and Pharr, G.M., J. Mater. Res. 14, 292 (1999).CrossRefGoogle Scholar
25.Lu, C-J. and Bogy, D.B., Int. J. Solids Struct. 32, 1759 (1995).CrossRefGoogle Scholar
26.Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W.W., J. Mater. Res. 8, 1291 (1993).CrossRefGoogle Scholar
27.Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, J., Wright, A., Bahr, D., and Gerberich, W.W., Acta Mater. 47, 333 (1999).CrossRefGoogle Scholar
28.Zielinski, W., Huang, H., and Gerberich, W.W., J. Mater. Res. 8, 1300 (1993).CrossRefGoogle Scholar
29.Zielinski, W., Huang, H., Venkataraman, S., and Gerberich, W.W., Phil. Mag. A 72, 1221 (1995).CrossRefGoogle Scholar
30.Samuels, L.E. and Mulhearn, T.O., J. Mech. Phys. Solids 5, 125 (1957).CrossRefGoogle Scholar
31.Page, T.F., Oliver, W.C., and McHargue, C.J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
32.Pharr, G.M., Oliver, W.C., Cook, R.F., Kirchner, P.D., Kroll, M.C., Dinger, T.R., and Clarke, D.R., J. Mater. Res. 7, 961 (1992).CrossRefGoogle Scholar
33.Doerner, M.F., Gardner, D.S., and Nix, W.D., J. Mater. Res. 1, 845 (1986).CrossRefGoogle Scholar
34.Venkatraman, R. and Bravman, J.C., J. Mater. Res. 7, 2040 (1992).CrossRefGoogle Scholar
35.Dirks, A.G., Wierenga, P.E., and van den Broek, J.J., Thin Solid Films 172, 51 (1989).CrossRefGoogle Scholar
36.Lawn, B.R., Evans, A.G., and Marshall, D.B., J. Am. Ceram. Soc. 63, 574 (1980).CrossRefGoogle Scholar
37.Baskes, M.I. (private communication, Los Alamos National Labo-ratories, 1999).Google Scholar
38.Castell, M.R., Shafirstein, G., and Ritchie, D.A., Philos. Mag. A 74, 1185 (1996).CrossRefGoogle Scholar