Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:21:48.887Z Has data issue: false hasContentIssue false

Structure of Pd–Te precipitates in a simulated high-level nuclear waste glass

Published online by Cambridge University Press:  31 January 2011

L. Galoisy
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09, Universités de Paris VI et VII et IPGP, 4 place Jussieu 75251 Paris Cedex 05, France
G. Calas
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09, Universités de Paris VI et VII et IPGP, 4 place Jussieu 75251 Paris Cedex 05, France
G. Morin
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09, Universités de Paris VI et VII et IPGP, 4 place Jussieu 75251 Paris Cedex 05, France
S. Pugnet
Affiliation:
Centre de Recherches Nucléaires de la Vallée du Rhône, CEA DCC/DRDD/SCD BP 171, F 30 205 Bagnols sur Cèze, France
C. Fillet
Affiliation:
Centre de Recherches Nucléaires de la Vallée du Rhône, CEA DCC/DRDD/SCD BP 171, F 30 205 Bagnols sur Cèze, France
Get access

Abstract

Structural and bonding characteristics of simplified (Pd, Te) precipitates have been determined in a simulated nuclear French glass using extended x-ray absorption fine structure (EXAFS) and x-ray diffraction. In this sample, these precipitates have a homogeneous composition, with about 10 wt.% Te. They retain a face-centered cubic structure as in pure Pd with a cell parameter which obeys Vegard's law. Pd K-edge EXAFS shows the presence of Te in the Pd coordination shell, with (Pd–Te) distances of 2.80 Å. These distances, higher by 0.05 Å than the (Pd–Pd) distances, may result in a lower packing efficiency of the CFC lattice. The comparison with the average distances derived from x-ray diffraction shows the nonmetallic character of the Pd–Te bond in these precipitates. These bonding modifications may cause the limited solubility of Te in metallic Pd.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kleykamp, H., Nucl. Technol. 80, 412422 (1988).CrossRefGoogle Scholar
2.Krause, Ch. and Luckscheiter, B., J. Mater. Res. 6, 25352546 (1991).CrossRefGoogle Scholar
3.Puyou, M., Jacquet-Francillon, N., Moncouyoux, J. P., Sombret, C., and Teulon, F., Nucl. Technol. 111, 163168 (1995).CrossRefGoogle Scholar
4.Pacaud, F., Fillet, C., and Jacquet-Francillon, N., in Scientific Basis for Nuclear Waste Management XV, edited by Sombret, C. G. (Mater. Res. Soc. Symp. Proc. 257, Pittsburgh, PA, 1992), pp. 161167.Google Scholar
5.Kelm, M. and Oser, B., in Scientific Basis for Nuclear Waste Management XV, edited by Sombret, C. G. (Mater. Res. Soc. Symp. Proc. 257, Pittsburgh, PA, 1992), pp. 177182.Google Scholar
6.Kelm, M., Görtzen, A., Kleykamp, H., and Pentinghaus, H., J. Less Comm. Metals 166, 125133 (1990).CrossRefGoogle Scholar
7.Jacquet-Francillon, N., Bonniaud, R., and Sombret, C., Radiochim. Acta 25, 231 (1981).CrossRefGoogle Scholar
8.Ladiat, C., Boën, R., Jouan, A., and Moncouyoux, J. P., 55th conference on glass problems, edited by Drummond, H. (1989), Vol. 3, pp. 11–14.Google Scholar
9.Chattopadhayay, G., Bhatt, Y. J., and Kera, S. K., J. Less Comm. Metals 123, 251266 (1986).CrossRefGoogle Scholar
10.Galoisy, L. and Calas, G., Am. Miner. 76, 17771780 (1991).Google Scholar
11.Galoisy, L. and Calas, G., Geochim. Cosmochim. Acta 57, 36133626 (1993).CrossRefGoogle Scholar
12.McKale, A. G., Veal, B. W., Baulikas, A. P., Chan, S. K., and Knapp, G. S., J. Am. Chem. Soc. 110, 37633768 (1988).CrossRefGoogle Scholar
13.Teo, B. K., Inorg. Chem. Concepts 9 (1986).CrossRefGoogle Scholar
14.Fukumi, K., Kageyama, H., Kadono, K., Chayahara, A., Kamijo, N., Makihara, M., Fujii, K., Hayakawa, J., and Satou, M., J. Mater. Res. 10, 24182421 (1995).CrossRefGoogle Scholar
15.Che, S., Sakurai, O., Funakubo, H., Shinozaki, K., and Mizutani, N., J. Mater. Res. 12, 392397 (1997).CrossRefGoogle Scholar
16.Matkovic, P. and Schubert, K., J. Less Comm. Metals 58, P39–P46 (1978).CrossRefGoogle Scholar
17.Raub, Ch., Compton, V. B., Geballe, T. H., Matthias, B. T., Maita, J. P. and Hull, G. W., Jr., J. Phys. Chem. Solids 26, 20512057 (1965).CrossRefGoogle Scholar